当前位置:文档之家› 高考物理稳恒电流解题技巧及练习题含解析

高考物理稳恒电流解题技巧及练习题含解析

高考物理稳恒电流解题技巧及练习题含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。

B 电阻的额定电流为,加在它上面的最大电压为10V ,所以仪器不能正常使用,而选择a 。

(2)电压表并联在M 与P 之间。

因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。

视频3.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。

某地要把河水抽高20m ,进入蓄水池,用一台电动机通过传动效率为80%的皮带,带动效率为60%的离心水泵工作。

工作电压为380V ,此时输入电动机的电功率为19kW ,电动机的内阻为0.4。

已知水的密度为,重力加速度取102。

求(1)电动机内阻消耗的热功率; (2)将蓄水池蓄入864的水需要的时间(不计进、出水口的水流速度)。

【答案】(1)3110r p W =⨯(2)4210t s =⨯【解析】试题分析:(1) 设电动机的电功率为P ,则P UI =设电动机内阻r 上消耗的热功率为r P ,则2r P I r = 代入数据解得3110r P W =⨯(2) 设蓄水总质量为M ,所用抽水时间为t .已知抽水高度为h ,容积为V ,水的密度为ρ,则M V =ρ设质量为M 的河水增加的重力势能为p E ∆, 则 p E Mgh ∆=设电动机的输出功率为0P ,则0? r P P P =- 根据能量守恒定律得060%80%p P t E ⨯⨯∆= 代入数据解得4210t s =⨯。

考点:能量守恒定律、电功、电功率【名师点睛】根据电动机的功率和电压求解出电流,再根据焦耳定律求解发热功率;水增加的重力势能等于消耗的电能(要考虑效率),根据能量守恒定律列式求解;本题关键是根据能量守恒定律列方程求解,要熟悉电功率和热功率的区别。

4.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =- 220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放5.(18分)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC 和QD在同一水平面内,与NQ的夹角都为锐角θ。

均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。

空间有方向竖直的匀强磁场(图中未画出)。

两金属棒与导轨保持良好接触。

不计所有导轨和ab棒的电阻,ef 棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g。

(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。

求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离。

【答案】(1)Q ef=;(2)q=;(3)B m=,方向竖直向上或竖直向下均可,x m=【解析】解:(1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生热量分别为Q和Q1,有Q+Q1=E k①且Q=Q1 ②由题意 E k=③得 Q=④(2)设在题设的过程中,ab棒滑行的时间为△t,扫过的导轨间的面积为△S,通过△S的磁通量为△Φ,ab棒产生的电动势为E,ab棒中的电流为I,通过ab棒某截面的电荷量为q,则E=⑤且△Φ=B△S ⑥电流 I=⑦又有 I=⑧由图所示,△S=d(L﹣dcotθ)⑨联立⑤~⑨,解得:q=(10)(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为:L x=L﹣2xcotθ (11)此时,ab棒产生的电动势E x为:E=Bv2L x (12)流过ef棒的电流I x为 I x=(13)ef棒所受安培力F x为 F x=BI x L (14)联立(11)~(14),解得:F x=(15)有(15)式可得,F x在x=0和B为最大值B m时有最大值F1.由题意知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中f m为最大静摩擦力,有:F1cosα=mgsinα+μ(mgcosα+F1sinα)(16)联立(15)(16),得:B m=(17)B m就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.有(15)式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值,如图可知F2cosα++μ(mgcosα+F2sinα)=mgsinα (18)联立(15)(17)(18),得x m=答:(1)ef棒上产生的热量为;(2)通过ab棒某横截面的电量为.(3)此状态下最强磁场的磁感应强度是,磁场下ab棒运动的最大距离是.【点评】本题是对法拉第电磁感应定律的考查,解决本题的关键是分析清楚棒的受力的情况,找出磁感应强度的关系式是本题的重点.6.如图所示的电路中,R1=4Ω,R2=2Ω,滑动变阻器R3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V和0~15V两挡,理想电流表的量程有0~0.6A和0~3A两挡.闭合开关S,将滑片P从最左端向右移动到某位置时,电压表、电流表示数分别为2V和0.5A;继续向右移动滑片P至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V,2.0Ω.【解析】【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势.【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R '=0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.7.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为1.5Ω=5Ω0.3L L U R I == 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-8.如图所示的电路中,电炉电阻R =10Ω,电动机线圈的电阻r =1Ω,电路两端电压U =100V ,电流表的示数为30A ,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少? 【答案】(1)I 2=20A (2)W =9.6×104J 【解析】 【详解】根据欧姆定律,通过电炉的电流强度为:11001010U I A A R === 根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I 2=I -I 1=20 A.电动机的总功率为P =UI 2=100×20 W =2×103W. 因发热而损耗的功率为P ′=I 22r =400 W.电动机的有用功率(机械功率)为P ″=P -P ′=1.6×103W , 电动机通电1 min 做的有用功为W =P ″t =1.6×103×60 J =9.6×104J. 【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I =U/R 直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.9.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ; ②电热水瓶加热时通过的电流I ;. ③电热水瓶保温5h 消耗的电能E . 【答案】①220V ②4A ③53.610J ⨯ 【解析】①根据图像可知,交流电电压的最大值为:2202m U V =,则该交流电电压的有效值为:2202mU V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.10.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.求:(1)在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; (2)在下滑过程中,ab 杆可以达到的速度最大值.【答案】(1)BLv R 22B L vgsin mRθ- (2)22sin mgR B L θ 【解析】(1)当ab 加速下滑时,速度大小为v 时,则 E BLv =根据闭合电路欧姆定律,有:E I R= 故BLvI R=,方向由a 到b 由安培力公式: F BIL =根据牛顿第二定律:mgsin F ma θ-=整理可以得到:2222 )/sin B L v B L v a mgsin m g R mR(θθ=-=-(2)当0a =时ab 杆的速度可以达到最大值 即: mBLv mgsin BL Rθ= 所以:22sin m mgR v B L θ=.11.如图所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距 L =1m ,导轨平面与水平面成θ= 30 0角,下端连接阻值为 R = 0.8Ω 的电阻,匀强磁场方 向与导轨平面垂直,磁感应强度大小为 B=1T ;质量为m = 0.1kg 、电阻 r = 0.2Ω金属棒放 在两导轨上,棒与导轨垂直并保持良好接触.g 取 10m/s2,求:(1)金属棒沿导轨由静止开始下滑时的加速度大小; (2)金属棒 ab 所能获得的最大速度;(3)若金属棒ab 沿斜面下滑0.2m 时恰好获得最大速度,求在此过程中回路一共生热多少焦?【答案】(1)5m/s 2(2)0.5m/s (3)0.0875J 【解析】试题分析:(1)金属棒开始下滑的初速度为零,根据牛顿第二定律得:mgsin ma θ= 代人数据解得:25/a m s =.(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F ,棒在沿导轨方向受力平衡有:A mgsin F θ=,22A BlvB L v F BIL B L R r R r===++,()22mB L v mgsin R r θ=+, 最大速度为:()220.5/m mgsin R r v m s B Lθ+==.(3)根据全过程中能的转化和守恒规律,有:212mgxsin mv Q θ=+, 所以全过程中系统产生的热为:210.08752Q mgxsin mv J θ=-=. 考点:导体切割磁感线时的感应电动势【名师点睛】电磁感应中导体切割引起的感应电动势在考试中涉及较多,关键要正确分析导体棒受力情况,运用平衡条件、牛顿第二定律和功能关系进行求解.12.导线中自由电子的定向移动形成电流,电流可以从宏观和微观两个角度来认识。

相关主题