当前位置:文档之家› 电信传输原理及应用第二章微波网络基础5

电信传输原理及应用第二章微波网络基础5

二、 二端口微波网络参量的性质
一般情况下,二端口网络的五种网络参量均有四个独立参量, 但当网络具有某种特性(如对称性或可逆性等)时,网络的独立 参量个数将会减少。
(一) 可逆网络
如前所述,可逆网络具有互易特性
Z12 Z21 Y12 Y21
或 或
~ Z~12
~ Z~21
Y12 Y21
其它几种网络参量的互易特性为
第2章 传输线理论
3.转移参量
用T2面上的电压、电流来表示T1面上的电压和电流的网络方程, 且规定电流流进网络为正方向,流出网络为负方向。则有
转移参量的定义为
U1
I1
A11
A21
A12 U 2
A22
I
2
A11
U1 U2
I2 0
A12
U 1 I2
U2 0
A21
I1 U2
I2 0
A22
T12U~i 2
U r1 T21U r2 T22U i2
U~~i1
U r1
T11 T21
T12 T22
U~~r 2 U i2
~
T11
U ~
i1
Ur2
~ Ui2 0
1 S21
表示表示T2面接匹配负载时,T1面 至T2面的电压传输系数的倒数, 其余参量没有直观的物理意义。
第2章 传输线理论
如果参考面位置改变,则网络参数也随之改变。
第2章 传输线理论
二、不均匀区等效为微波网络
微波元件对电磁波的控制作用是通过微波元件内部的不均匀区 (不连续性边界)和填充媒质的特性来实现的。将不均匀区等效为 微波网络,需要用到电磁场的唯一性原理和线性叠加原理。
线性叠加原理
对于n端口线性网络, U1 Z11 I1 Z12 I 2 Z1n I n U 2 Z21 I1 Z22 I 2 Z2n I n
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2, ,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
Yij Yji i j, i, j 1,2, ,n
(3) 对于对称网络,则有
Zii Z jj
Yii Yjj i j, i, j 1,2, ,n
Байду номын сангаас
A11 A22
Z01 Z02
由此可见,一个对称二端口网络的两个参考面上的输 入阻抗、输入导纳以及电压反射系数等参量一一对应 相等
第2章 传输线理论
(三) 无耗网络
利用复功率定理和矩阵运算可以证明,一个无耗网络的散射矩 阵一定满足“么正性”,即
[S]T [S * ] [1]
或写成
S11 S12
(2)电路中不均匀区附近将会激起高次模,此时高次模对工作模式 的影响仅增加一个电抗值,可计入网络参量之内。
(3)整个网络参考面要严格规定,一旦参考面移动,则网络参量就 会改变。
(4)微波网络的等效电路及其参量只适用于一个频段
第2章 传输线理论
微波元件等效为微波网络 一、 网络参考面的选择
参考面的位置可以任意选,但必须考虑以下两点: (1)单模传输时,参考面的位置应尽量远离不连续性区域, 这样参考面上的高次模场强可以忽略,只考虑主模的场强; (2)选择参考面必须与传输方向相垂直,这样使参考面上 的电压和电流有明确的意义
不管电路如何变化,信号源输出功率可以设法保持不变,而且 很容易得到匹配的终端负载。
1.散射参量
二端口网络参考面T1和T2面上的归一化入射波电压和归一化 反射波电压应用叠加原理,可以用两个参考面上的入射波电 压来表示两个参考面上的反射波电压,其网络方程为
~
~
~
U ~
r1
S11U~i1
S12U~i 2
第2章 传输线理论 2.6 微波网络基础
任何一个微波系统都是由各种微波元件和微波传输线 组成的。任何一个复杂的微波系统都可以用电磁场理 论和低频网络理论相结合的方法来分析,这种理论称 为微波网络理论。
微波网络具有如下特点:
(1)对于不同的模式有不同的等效网络结构及参量。通常希望传输 线工作于主模状态。
波比。
1
1
当输出端接匹配负载时,输入端反射系数即为S11,所以有
1 S11 或
1 S11
1 S11 1
对于可逆无耗网络,仅有反射衰减,因此插入衰减与输入驻 波比有下列关系
A
1 S12 2
1
1 S11
2
1 2 4
1 S21 2
第2章 传输线理论
多端口微波网络
描述多端口微波网络的参量矩阵只有阻抗矩阵、导纳矩阵 和散射矩阵三种。
第2章 传输线理论
二端口微波网络
一、 二端口微波网络的网络参量 在各种微波网络中,二端口微波网络是最基本的。例如: 衰减器、移相器、阻抗变换器和滤波器等均属于二端口微 波网络。 表征二端口微波网络特性的参量可以分为两大类: 一、反映网络参考面上电压与电流之间关系的参量 二、反映网络参考面上入射波电压与反射波电压之间 关系的参量。如图所示。
Pi
1 2
~ U i1
2
1~ 2 PL 2 U r2
A Pi
PL
~ Ui2 0
~2
~ ~ ~ ~2
Ui1 A ~ 2 Ur2
1 T2
1 S21 2
A11 A12 A21 A22 4
由此可见,插入衰减等于电压传输系数平方的倒数。
对于可逆二端口网络,则有
A 1 1
S21 2
S12 2
第2章 传输线理论
Z 01 Z 02 Z 21
Z 01 Z 02
第2章 传输线理论
2. 导纳参量 用T1和T2两个参考面上的电压表示两个参考面上的电流,其网 络方程为
I1
I
2
Y11 Y21
各导纳参量元素定义如下
Y12 U1
Y22
U
2
Y11
I1 U1
U2 0
Y22
I2 U2
U1 0
Y12
I1 U2
~ U2
U2 Z02
~ I1 = I1 Z01 ~ I 2 = I 2 Z02
归一化
~ ~~ ~~ U~1 Z~11 I~1 Z~12 I~2
U 2 Z21 I1 Z22 I 2
归一化阻抗参量为
~ Z11
Z11 Z 01
~ Z 22
Z 22 Z 02
~ Z12 ~ Z21
Z12
I1 A21U 2 A22 I 2
~ U1
U1 Z01
~ A11 A11
Z02 Z01
~ U2
U2 Z 02
~ A21 A21 Z01Z02
~ I1 I1 Z01
~ I 2 I 2 Z02
~ A12
A12 Z01Z02
~ A22 A22
Z01 Z02
第2章 传输线理论
(二) 散射参量和传输参量
I1 0
表示T1面开路时,端口(2)的输入阻抗;
Z12
U1 I2
I1 0
表示T1面开路时,端口(2)至端口(1)的转移阻抗;
Z21
U2 I1
I2 0
表示T2面开路时,端口(1)至端口(2)的转移阻抗。
第2章 传输线理论
特性阻抗归一化
T1和T2参考面上的归一化电压和归一化电流分别为
~ U1
U1 Z01
2
Y21
Y22
Y2n
U
2
I
n
Yn1 Yn2
Ynn
U
n
U ZI
I YU
第2章 传输线理论
唯一性原理
在一个封闭区域的边界上,切向电场或者切向磁场如果 是确定的,那么区域内的电磁场就被唯一确定
不连续性区域的边界是由导体及网络参考面构成的,参 考面上的模式电压和模式电流正比于横向电场和横向 磁场的幅度函数,如果网络参考面上的电压确定了, 则网络内的电磁场就唯一地确定
U1 0
Y21
I2 U1
U2 0
表示T2面短路时,端口(1)的输入导纳; 表示T1面短路时,端口(2)的输入导纳 表示T1面短路时,端口(2)至端口(1)的转移 导纳;
表示T2面短路时,端口(1)至端口(2)的转移 导纳。
第2章 传输线理论
如果T1和T2参考面所接传输线的特性导纳分别为Y01和Y02, 则归一化表示式为
第2章 传输线理论
三、 微波网络的特性 (一) 微波网络的分类
按网络的特性进行分类
1. 线性与非线性网络 2. 可逆与不可逆网络 3. 无耗与有耗网络 4. 对称与非对称网络
按微波元件的功能来分
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第2章 传输线理论
(二) 微波网络的性质
I1 I2
U2 0
表示T2面开路时,端口(2)至端口(1)的电压转移 系数;
表示T2面短路时,端口(2)至端口(1)的转移阻抗; 表示T2面开路时,端口(2)至端口(1)的转移
导纳; 表示T2面短路时,端口(2)至端口(1)的电流转移
系数。
第2章 传输线理论
归一化方程
~ ~~ ~~ U~1 ~A11U~ 2 ~A12~I 2
U r2 S21U i1 S22U i2
U~~r1 U r2
S11 S21
S12 S22
U~~i1 U i2
第2章 传输线理论
散射参量的定义为
~
S11
U r1 ~
Ui1
~ Ui2 0
~
S12 U~r1
相关主题