光波导
设波导薄膜的厚度是 2d,波导中心轴的弯曲半径 R,为简单起见,只讨论 TE
波,采用极坐标( , )系统,径向距离 从曲率中心算起,且假定与( , )
平面垂直的方向上场是均匀的。在波导外侧(R+d)< < 区域中,麦克斯韦方
程的解由下给出:
Ey BHm(1) (k0n2 )ei(m wt )
量级的。 2.实际的波导永远不会是理想的,在结构上都或多或少地存在一定不完整,如介 质的不均匀性和界面的不平整性,这些不完整性将是引起波导模式之间的相互耦 合。由于这种耦合作用,在波导始端入射的某一个导模在波导中传输时,将激发 出其他的导模和辐射模,并且其功率将转移到这些所激发的模式上,造成信号的 失真和功率损耗,还有,当多个波导相互临近是,这些波导中所传输的导模在芯 外的倏逝场也要相互作用而产生耦合,其结果将引起波导间模式功率的相互转 移。 直波导和弯曲波导的耦合。波导参数:宽度 4um,间距 6.36um,纤芯折射率:1.5, 包层折射率:1.49,仿真图样(图 2-1)如下:
二.设计步骤 1.阅读 OptiBPM 提供的操作指南,了解和学习光波导的参数设置,以及各种波
导的画法。 2.先尝试画一条直波导,观察光在光波导中的能量分布,模拟出古斯汉欣位移
效应,并做出分析,选取不同的折射率观察对光能量有何影响。分析讨论古斯汉 欣位移距离的量级。
3.做直波导与弯曲波导的耦合,改变波导的折射率、波导间距离、波导宽度等 参数,观察光波的传播规律。 三.仿真结果分析
函数 EXP(im )等效于直波导的传播因子 exp(i z),由此可得到的近似关系
m R
( 2.05)
因为 R 远大于光波长,故 m 是一个很大的数。为了建立振幅因子与导模携带功
率之间的关系,需要第一类汉开尔函数加以简化,对于 m k0n2 区域,第一类 汉开尔函数可近似为
H m(1) (k0n2 ) i
1 p2
exp{[1 2
p2
ln( 1
p2
) 1] p2R}
Ey iB
e e p2 x ix
2 P2 R
(2.17)
在 R 趋近于 时,直波导 TE 模在 d<x< 区域中场的形式为
Ey Ae p2 ( xd )
( 2.18)
式中,指数衰减长的振幅因子可以有场所携带的功率 P 来表示
在仿真中我只改变了波导的参数,而没有改变入射光的参数,后来我也尝试的 去改变了一下入射光的,振幅,相位,波长,由于当时没有及时的记录下来相应 的耦合情况,而无法做出清晰的说明。 五.分析和总结
这次课程设计,对于我而言是个全新的东西,基本了解了波导耦合的原理, 但对导波光学却知之甚少,以前确实是没有关注过的,不过,通过这次课程设计, 让我对本专业或者是光学有了更为浓厚的兴趣。在此期间了解到了该领域的前沿 内容(快光,慢光,光开关,),以及波导耦合的作用,还阅读了几篇学术论文, 为自己的专业道路打下了基础。
仿真如下:
让其连续的变化 10 次,而只取了其中 2 次,清晰的展现了,由于间距的改变, 而改变了光在直波导和弯曲波导之间的能量分配。 4.只改变波导的尺寸,宽度 6um,的同时,也让其间距微调 10 次,只取其中间 2 次,依然可以明了的光能量在波导中的分布,情况以及散射情况,上述已经陈述 过,光在经过弯曲波导时会有教大的损耗。如下图所示
第二周
幅、相位、波振面形状等参数,观察光波的传播规律。检查设 计结果。召开课程设计总结交流会,总结交流学生在课程设计
六.参考文献
《导波光学》 曹庄琪 科学出版社
《光波导模式理论》 马春生 刘式墉 吉林大学出版社
西安邮电大学电子工程学院专业课程设计过程考核表
学生姓名
刘寒
班级/学号
光信息 1003(05103073)
承担任务实验室(单位) 光信息科学与技术
所在部门
光电子技术系
实施时间
2013 年 4 月 22 日 — 2013 年 5 月 3 日
(2.14)
上式中第一级数可以用一个对数函数表示,第二部分中包含一个简单的几何级
数,于是可得一下关系:
1 1 ln[ 2 1
p2
p2
] (k0n2 )2
p2
1
1
p2 2
2
x R
( 2.15)
1 p2 tanh u 1 [ ] P2 P2 x
2 1 p2 R
(2.16)
可以把电磁分量 Ey 写成如下形式:
(2.01)
H
B
w 0
k02
m
H m (1) (k0 n2 )ei(m wt )
( 2.02)
H
iB n2w 0 k0
m
H (1) m
(k0n2 )ei(m wt )
( 2.03)
在波导薄膜(R-d)< <(R+ d)中,麦克斯韦方程的解是贝塞尔函数与诺依曼函
数的线性叠加;而在波导内侧(0< <R-d)区域,由于存在的寄点 =0,因此麦
D
cn2 n21sin2 n22 1 2
式中,c 为常数,n1=3.3,n2=3.27,则 C=0.03, 为光波长。这个现象出现是基
于实际光线都具有一定的空间谱宽,也即实际的光线由一光速构成,它们指向同
一入射点,但入射角有一定的宽度 。接着在其他参数不改变的情况下,改
变光波导的纤芯或者包层的折射率,然后再次观察古斯-汉欣位移的变化,如下
1 p2
)(12
]1 2 p22 )
1 p2
exp{[ 1 2
p2
ln( 1
p2
) 1] p2 R}
(2.20)
对于远离波导薄膜的区域,第一类汉开尔函数可表示为大宗量的近似形式,于是, 根据是(2.01)表示的场分量可写成如下形式:
Ey B
2
e e ik0n2 i (2m1)
4 eiz
k0n2
c Const NumIterations = 10 Delta=1.0/(NumIterations-1) For x = 1 to NumIterations Linear1.SetPosition 0, 3.0+Delta*(x-1),2500, 3.0+Delta*(x-1) ParamMgr.Simulate Next
在最初接触 OptiBPM 这个软件,让人真的是很痛苦,全英文的界面以及全英 文的使用说明,在熟悉软件的时候是一边查单词,一边仿真,不过这样做是有效 果的,经过这样的 4-5 天,那说明书我是可以大致读过去了。
在仿真直波导和弯曲波导的耦合的时候,由于理论的困乏,无法精确的计算 出波导的各个参数,只能运用最为原始或者说是最为笨拙的方法,就是慢慢的去 用个个数据尝试,而且也不会去编程,只能手动拖拽,经过一晚上的努力,完成 了直波导和弯曲波导的耦合,而且同时也初步的了解了波导间耦合所需要的条件 以及各个因素对波导耦合的影响,只因为这种了解只停留于初步了解,无法用合 理的公式做出精确的数学表示。
在改变其间距后,可以明显的看到了,波导的耦合现象,以及光能量的从新分配 5.在改变其折射率以后,纤芯折射率为:1.5,包层折射率:1.487 仿真图像如下:
再次改变,纤芯折射率 1.65,包层折射率为 1.487
此时也会出现耦合现象,但现象却并非相同,说明折射率也是会影响耦合。因为 对于非对称光波导需要一定的厚度才能容纳一个导模,因此第一个导模的有效折 射率对应的波导深度一般距离表面至少有两个波长,在这个范围内,由于没有任 何有关折射率的分布的信息,因而在波导表面折射率的测量是至关重要的。 四.设计过程中发生的问题及解决的方法
A
2 1[ (2d
1 p0
w0 p
1 p2
)(12
]1 2 p22 )
(2.19)
在 R 很大的情况下,使弯曲波导外侧,靠近薄膜处的场近似用直波导相应区域的 长来代替。比较(2.17)和(2.18),并利用(2.19),可以确定长的振幅系数
B
2i1e p2d [ (2d
2
w0
p2 R P
1 p0
集中讲解设计的目的及要求;介绍系统设计的一般方法和步
骤;介绍软件及其应用;布置课程设计题目;分析设计中可能
第一周 出现的问题。学生选题,查阅资料,设计光路;在教师指导下学
生通过几个不同的例子学习软件的使用。学生进行初始结构设
具体内容
计并进行组内讨论。
改变波导的折射率、波导间距离、波导宽度、入射光波振
(2.21)
上式表明,在远离波导薄膜区域,弯曲波导和直波导的长是全区不同的,弯曲波 导外侧的场由指数衰减形式变为弯曲辐射的形式,这种性质解释了弯曲波导因辐 射而损失功率的原因。 3.波导其他参数不改变,只改变波导之间的间距,
c Const NumIterations = 10 Delta=1.0/(NumIterations-1) For x = 1 to NumIterations Linear1.SetPosition 0, 3.0+Delta*(x-1),2500, 3.0+Delta*(x-1) ParamMgr.Simulate Next
1.直波导通入光后,古斯-汉欣位移效应,光波导宽度 40um,纤芯折射率:3.3, 包层折射率:3.27.仿真图(图 1-1)如下:
图 1-1 光在波导中的光强度在波导中,从中心处向两边缘逐渐减小,可是光强的分布范 围很明显大于 40um 的光波导宽度,多余出来的距离就是古斯-汉欣位移。所谓的 古斯-汉欣位移,即就是实际的反射点与理想的反射点之间存在一定的距离 D, 可用公式表示为:
图 1-2 虽然变化量很小,但依然可以看见,当包层折射率减小到 3.15,古斯-汉欣位移 减小了。之后再次改变纤芯的折射率到 4.0,再次观察其位移的变化,与前两次 的进行比较,如图 1-3