当前位置:文档之家› 液体和固体电介质的击穿特性

液体和固体电介质的击穿特性


一、电介质的组合原则
直流电压下,各层绝缘分担的电压与其绝缘电阻 成正比,亦即场强与各层电导率σ 成反比: E1/E2=σ 2/ σ
则E1σ 1= E2σ 2 ,各层Eb1 σ 定。
1 1
值小的先击穿,由电导率决
二、组合绝缘的特点
1、“油-屏障”式绝缘
油浸电力变压器主绝缘采用的是“油-屏障”式绝缘 结构,在这种组合绝缘中以变压器油作为主要的电介 质,在油隙中放置若干个屏障是为了改善油隙中的电 场分布和阻止贯通性杂质小桥的形成。一般能将电气 强度提高30%~50%。
电压作用时 间越短,液体的击 穿电压越高,因为 形成杂质“小桥” 需要时间。
稍不均匀电场中变压器油的伏秒特性曲线
在电压作用时间短至几个微秒时击穿电压很高,
击穿有时延特性,属电击穿;

电压作用时间为数十到数百微秒时,杂质的影响
还不能显示出来,仍为电击穿,这时影响油隙击
穿电压的主要因素是电场的均匀程度;
发生两种情况:
(1)杂质小桥尚未接通电极时,则纤维等杂质 与油串联,由于纤维的εr大以及含水分纤维的电 导大,使其端部油中电场强度显著增高并引起电离,
于是油分解出气体,气泡扩大,电离增强,这样下
去必然会出现由气体小桥引起的击穿。
(2)如果杂质小桥尚未接通电极,因小桥的电 导大而导致泄漏电流增大,发热会促使汽化,气 泡扩大,发展下去会出现气体小桥,使油隙发生 击穿。
复合绝缘体:不同的绝缘体组合起来使用。 一方面,复合绝缘相互弥补弱点,得到更高的 击穿场强; 另一方面,实用绝缘结构很难使用单一绝缘。
一、电介质的组合原则
常见的复合绝缘体:由多种电介质构成的层叠绝缘
理想的电压分布:各层电介质承受的场强与该层介 质的耐电强度成正比,这样整个组合绝缘的电气 强度最高,各层绝缘材料的利用也最合理、最充 分。
3.2固体电介质的击穿特性
固体电介质的击穿机理
影响固体电介质击穿电压的因素
提高固体电介质击穿电压的方法

气、固、液三种电介质中,固体密度最大,耐电强度最高 空气的耐电强度一般在3 — 4 kV/mm左右; 液体的耐电强度在10 — 20 kV/mm; 固体的耐电强度在十几 — 几百kV/mm

碰撞,从而导致击穿
电击穿的特点:电压作用时间短,击穿电压高,击穿电压与环
境温度无关,与电场均匀程度有密切关系,与电压作用时间关 系很小。
当固体电介质的介质损耗很小、有良好的散热条件,且内部不
存在局部放电,这种情况下发生的击穿通常是电击穿。其击穿
场强一般可达105~106kV/m 。
击穿理论——(2)热击穿理论
固体电介质的击穿过程最复杂,且击穿后是唯一不可恢复 的绝缘
普遍规律:任何介质的击穿总是从电气性能最薄弱的缺陷 处发展起来的,这里的缺陷可指电场的集中,也可指介质 的不均匀性
一、 击穿机理——(1)电击穿理论

电击穿理论建立在固体电介质中发生碰撞电离基础上,固体电 介质中存在少量传导电子,在电场加速下与晶格结点上的原子
二、影响液体电介质击穿电压的因素
1. 杂质(悬浮水、纤维)
杂质的存在将极 大地降低液体的击穿 电压。电场越均匀、 电压作用时间越长, 杂质的影响越大。微 量水分与变压器油的 击穿电压关系如图
变压器油的工频击穿电压和含水量的关系


耐压试验 用标准油杯来检查油的质
量 平板电极间电场均匀,油 中稍有受潮、含杂,击穿电压 就明显下降 规程规定:对于变压器油 ,在此油杯中的工频击穿电压 要求在 2540kv以上 ( 与设备的 额定电压有关);电缆和电容器 的用油,在油杯中的击穿电压 常要求在50或 60kv以上
水在变压器油中有两种状态: ①溶解状态:高度分散、且分布非常均匀;
②悬浮状态:呈水珠状一滴一滴悬浮在油中。
2. 温度 水分在液体 中的存在形式受温 度的影响,随着温 度的升高,水分从 冰逐渐转变为悬浮 状态的水滴、溶解 状态的水和水蒸气。 当水处于溶解状态
时,对液体的影响 最小。
标准油杯中变压器油工频击穿电压与温度的关系 1-干燥的油; 2-受潮的油
一、电介质的组合原则
一、电介质的组合原则
交流电压、冲击电压下,各层介质所分担的电压与其 电容成反比,亦即场强与各层介质介电常数成反比: E1/E2=ε2/ε1 则E1 ε1= E2 ε2,各层Eb1 ε1值小的先击穿,且一般气体、液体
、固体介电常数大的击穿场强也大,所以击穿难易程度为: 气体、液体、固体。
加;当电压频率增大时,击穿电压将下降;击穿电压
与电压作用时间有关。
击穿理论——(3)电化学击穿理论
介质劣化的结果。
介质的局部区域发生局部放电,这种放电并不立即形成贯
穿性通道,而是非完全击穿,它使介质引起化学离解,形 成树枝状通道,这些树枝状通道,随时间推移不断伸长, 使绝缘进一步劣化,最终发展到整个电介质击穿。
3. 绝缘层 在金属电极表面紧贴较厚的固体绝缘层。因该固体的介电常数大 于液体介质,从而减小了电极附近的电场强度,防止电极附近局部放电 的发生;适用于不均匀电场。在变压器中常在高压引线和屏蔽环包裹较 厚的绝缘层。
4. 屏障
是放置在电极间油隙中的固体绝缘板。它能机械地阻隔杂质“小 桥”成串,而且能够在不均匀电场中起到聚集空间电荷、改善电场分布 的作用。适用于均匀电场和不均匀电场中电压作用时间较长的情况。对 于作用时间很短的冲击电压,则通过阻挡光子的传播来阻碍流注的发展, 提高冲击击穿电压。在变压器中常利用绝缘板做成圆筒、圆环等形状, 放置在铁芯与绕组、低压绕组与高压绕组之间,并且常放置多个,将油 隙分成几个小油隙。
一、液体电介质的击穿理论
纯净的液体电介质:
电击穿理论; 气泡击穿理论。
工程用液体电介质:气泡小桥击穿理论;
(一) 电击穿理论
在外电场足够强时,电子在碰撞液体分子可引起 电离,使电子数倍增,形成电子崩。同时正离子在阴 极附近形成空间电荷层增强了阴极附近的电场,使阴 极发射的电子数增多,导致液体介质击穿。
电气安全与电气试验
第三章 液体和固体电介质的击穿特性
液体、固体电介质的电气强度比常压下的空气高很 多,用它们作为绝缘介质,可以大大缩小导体间的 绝缘距离,从而减小电气设备的体积 液体、固体电介质是电气设备内绝缘的主要绝缘材 料 外绝缘属于自恢复绝缘,内绝缘属于非自恢复绝缘
内绝缘的电气强度是用其所能耐受住的试验电压来 衡量的,试验电压是根据系统可能的过电压水平而 选定的
采用过滤等手段消除液体中的杂质,并且防止液体与空气接触从 空气中吸收水分。该方法能够避免形成杂质“小桥”,从而达到提高击 穿电压的目的。 2. 复盖层
在金属表面紧贴一层固体绝缘薄层,使“小桥”不能直接接触电 极,从而在很大程度上减小了泄漏电流,阻断了“小桥”热击穿的发展。 适用于油本身品质较差,电场较均匀、电压作用时间较长的情况。在变 压器中常利用较薄的绝缘纸包裹高压引线和绕组导线。
2、油纸绝缘
电气设备中使用的绝缘纸(包括纸板)纤维间含有大量的空隙, 因而干纸的电气强度是不高的,用绝缘油浸渍后,整体绝缘性 能可大大提高。 油纸绝缘则是以固体介质为主体的组合绝缘,液体介质只是用 作充填空隙的浸渍剂,因此这种组合绝缘的击穿场强很高,但 散热条件较差.
二、组合绝缘的特点
绝缘纸和绝缘油的配合互补,使油纸组合绝缘的击 穿场强可达500~600kV/cm,大大超过了各组成成分 的电气强度(油的击穿场强约为200kV/cm,而干纸只 有100~150kV/cm)。 各种各样的油纸绝缘目前 广泛应用于电缆、电容器、电容式套管等电力设备中 。
电化学击穿的特点:由于它是绝缘性能下降之后发生的击
穿,因此击穿电压比电击穿和热击穿低。电化学击穿不发 生在很高电压下,而是在较低电压下甚至是工作电压下发 生。
二、影响固体介质击穿电压主要因素





电压作用时间 场均匀程度 温度 电压种类 累积效应 受潮 机械负荷
三、提高固体电介质击穿电压的方法
减小,这促使电离进一步发展。电离产生的带电粒子 撞击油分子,使它又分解出气体,导致气体通道扩大。 许多电离的气泡在电场中排列成气体小桥,击穿就可 能在此通道中发生。
(三)工程用变压器油的击穿过程及其特点
可用气泡击穿理论来解释击穿过程,它依赖于 气泡的形成、发热膨胀、气泡通道扩大并积聚成小桥, 有热的过程,属于热击穿的范畴。 由于水和纤维的εr很大,易沿电场方向极化定 向,并排列成杂质小桥。

改进绝缘设计如采取合理的绝缘结构,使各
部分绝缘的耐电强度能与共所承担的场强有适 当的配合; 改善电极形状及表面光洁度,尽可能使电场分布均 匀,把边缘效应减到最小; 改善电极与绝缘体的接触状态,消除接触处的气隙 或使接触处的气隙不承受电位差。

改进制造工艺清除固体电介质中残留的杂质
、气泡、水分等

改善运行条件 注意防潮,加强散热冷却等。
3 电场均匀度 在冲击电压下,由于杂质来不及形成小桥,故改善电 场总是能显著提高油隙的冲击击穿电压,而与油的品 质好坏几乎无关。 优质油:保持油不变,而改善电场均匀度,能使工频 击穿电压显著增大,也能大大提高其冲击击穿电压。 品质差的油:改善电场对于提高其工频击穿电压的效 果较差。
4. 电压作用时间
油纸绝缘的最大缺点:易受污染(包括受潮) 因为纤维素是多孔性的极性介质,很易吸收水分 。即使经过细致的真空干燥、浸渍处理并浸在 油中,它仍将逐渐吸潮和劣化。
三、利用组合绝缘调整电场的方法
超高压交流电缆常为单相圆芯结构,由于其绝缘层 较厚,一般采用分阶结构,以减小缆芯附近的最 大电场强度。 所谓分阶绝缘是指由介电常数不同的多层绝缘构成 的组合绝缘。 分阶原则是对越靠近缆芯的内层绝缘选用介电常数 越大的材料,以达到电场均匀化的目的。如:
相关主题