点焊规范参数对熔核尺寸及接头机械性能的影响一、实验目的(一)研究规范参数对于熔核尺寸及接头强度的影响;(二)掌握选择点焊规范参数的一般原则和方法;(三)了解熔核的形成过程;二、实验装置及实验材料(一)交流点焊机(DN——200型)1台(二)电焊电流测量仪(HDB——1型)1台(三)拉力试验机(LJ——5000型)1台(四)测量显微镜(15J型)4台(五)砂轮切割机1台(六)吹风机1台(七)试片150×25×1.5mm,冷轧低碳钢140对三、实验原理电阻点焊是将准备焊接的工件放在两个电极之间,然后利用电极压紧工件,在点击压力的作用下通过焊接电流,利用工件自身电阻所产生的焦耳热来加热金属,并使焊接区中心部位的金属熔化,形成熔核。
断电后,在电极压力的作用下,受热熔化的金属冷却结晶,形成焊点核心。
在形成熔核的同时,熔核周围金属也被加热到高温,在点击压力作用下产生塑性变形及强烈的再结晶过程,并在结合面上形成共同晶粒。
熔核周围这一环形塑性区称为塑性环;它也有助于点焊接头承受载荷。
由此可知,电焊工艺过程是被焊金属受到热和机械力共同作用的过程,而施加焊接压力和通以焊接电流时形成点焊接头的基本条件。
电阻焊具有生产效率高、低成本、节省材料、易于自动化等特点,因此广泛应用于航空、航天、能源、电子、汽车、轻工等各工业部门,是重要的焊接工艺之一。
(一)焊接热的产出及影响因素点焊时产生的热量由下式决定:Q=IRt(J)(1)式中:Q——产生的热量(J)、I——焊接电流(A)、R——电极间电阻(欧姆)、t——焊接时间(s)1.电阻R及影响R的因素电极间电阻包括工件本身电阻Rw,两工件间接触电阻Rc,电极与工件间接触电阻Rew.即R=2Rw+Rc+2Rew——(2)当工件和电极一定时,工件的电阻取决与它的电阻率.因此,电阻率是被焊材料的重要性能.电阻率高的金属其导电性差(如不锈钢)电阻率低的金属其导电性好(如铝合金)。
因此,点焊不锈钢时产热易而散热难,点焊铝合金时产热难而散热易.点焊时,前者可用较小电流(几千安培),而后者就必须用很大电流(几万安培)。
电阻率不仅取决与金属种类,还与金属的热处理状态、加工方式及温度有关。
接触电阻存在的时间是短暂,一般存在于焊接初期,由两方面原因形成: 1)工件和电极表面有高电阻系数的氧化物或脏物质层,会使电流遭到较大阻碍。
过厚的氧化物和脏物质层甚至会使电流不能导通。
2)在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点。
在接触点处形成电流线的收拢。
由于电流通路的缩小而增加了接触处的电阻。
电极与工件间的电阻Rew与Rc和Rw相比,由于铜合金的电阻率和硬度一般比工件低,因此很小,对熔核形成的影响更小,我们较少考虑它的影响。
2.焊接电流的影响从公式(1)可见,电流对产热的影响比电阻和时间两者都大。
因此,在焊接过程中,它是一个必须严格控制的参数。
引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化。
阻抗变化是因为回路的几何形状变化或因在次级回路中引入不同量的磁性金属。
对于直流焊机,次级回路阻抗变化,对电流无明显影响。
3.焊接时间的影响为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以相互补充。
为了获得一定强度的焊点,可以采用大电流和短时间(强条件,又称硬规范),也可采用小电流和长时间(弱条件,也称软规范)。
选用硬规范还是软规范,取决于金属的性能、厚度和所用焊机的功率。
对于不同性能和厚度的金属所需的电流和时间,都有一个上下限,使用时以此为准。
4.电极压力的影响电极压力对两电极间总电阻R有明显的影响,随着电极压力的增大,R显著减小,而焊接电流增大的幅度却不大,不能影响因R减小引起的产热减少。
因此,焊点强度总随着焊接压力增大而减小。
解决的办法是在增大焊接压力的同时,增大焊接电流。
5.电极形状及材料性能的影响由于电极的接触面积决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因此,电极的形状和材料对熔核的形成有显著影响。
随着电极端头的变形和磨损,接触面积增大,焊点强度将降低。
6.工件表面状况的影响工件表面的氧化物、污垢、油和其他杂质增大了接触电阻。
过厚的氧化物层甚至会使电流不能通过。
局部的导通,由于电流密度过大,则会产生飞溅和表面烧损。
氧化物层的存在还会影响各个焊点加热的不均匀性,引起焊接质量波动。
因此彻底清理工件表面是保证获得优质接头的必要条件。
(二)热平衡及散热点焊时,产生的热量只有一小部分用于形成焊点,较大部分因向临近物质传导或辐射而损失掉了,其热平衡方程式:Q=Q1+Q2————(3)其中:Q1——形成熔核的热量、Q2——损失的热量有效热量Q1取决与金属的热物理性能及熔化金属量,而与所用的焊接条件无关。
Q1=10%-30%Q,导热性好的金属(铝、铜合金等)取下限;电阻率高、导热性差的金属(不锈钢、高温合金等)取上限。
损失热量Q2主要包括通过电极传导的热量(30%-50%Q)和通过工件传导的热量(20%Q左右)。
辐射到大气中的热量5%左右。
(三)焊接循环点焊和凸焊的焊接循环由四个基本阶段1)预压阶段——电极下降到电流接通阶段,确保电极压紧工件,使工件间有适当压力。
2)焊接时间——焊接电流通过工件,产热形成熔核。
3)维持时间——切断焊接电流,电极压力继续维持至熔核凝固到足够强度。
4)休止时间——电极开始提起到电极再次开始下降,开始下一个焊接循环。
为了改善焊接接头的性能,有时需要将下列各项中的一个或多个加于基本循环:1)加大预压力以消除厚工件之间的间隙,使之紧密贴合。
2)用预热脉冲提高金属的塑性,使工件易于紧密贴合、防止飞溅;凸焊时这样做可以使多个凸点在通电焊接前与平板均匀接触,以保证各点加热的一致。
3)加大锻压力以压实熔核,防止产生裂纹或缩孔。
4)用回火或缓冷脉冲消除合金钢的淬火组织,提高接头的力学性能,或在不加大锻压力的条件下,防止裂纹和缩孔。
(四)焊接电流的种类和适用范围1.交流电可以通过调幅使电流缓升、缓降,以达到预热和缓冷的目的,这对于铝合金焊接十分有利。
交流电还可以用于多脉冲点焊,即用于两个或多个脉冲之间留有冷却时间,以控制加热速度。
这种方法主要应用于厚钢板的焊接。
2.直流电主要用于需要大电流的场合,由于直流焊机大都三相电源供电,避免单相供电时三相负载不平衡。
(五)金属电阻焊时的焊接性下列各项是评定电阻焊焊接性的主要指标:1.材料的导电性和导热性电阻率小而热导率大的金属需用大功率焊机,其焊接性较差。
2.材料的高温强度高温(0.5-0.7Tm)屈服强度大的金属,点焊时容易产生飞溅,缩孔,裂纹等缺陷,需要使用大的电极压力。
必要时还需要断电后施加大的锻压力,焊接性较差。
3.材料的塑性温度范围塑性温度范围较窄的金属(如铝合金),对焊接工艺参数的波动非常敏感,要求使用能精确控制工艺参数的焊机,并要求电极的随动性好。
焊接性差。
4.材料对热循环的敏感性在焊接热循环的影响下,有淬火倾向的金属,易产生淬硬组织,冷裂纹;与易熔杂质易于形成低熔点的合金易产生热裂纹;经冷却作强化的金属易产生软化区。
防止这些缺陷应该采取相应的工艺措施。
因此,热循环敏感性大的金属焊接性也较差。
四、实验步骤(一)实验准备1、用粗砂纸清除焊接试片的铁锈,直到表面有金属光泽为止。
2、启动焊机,检查焊接是否正常工作。
3、将焊接电流表的传感器套入焊机的下机壁,并检查电流表工作是否正常。
(二)选择最佳焊接规范1、初选参考焊接规范。
(1)焊接电流(2)焊接时间2、用一对试片焊2~3个焊点,试片的一端应留20~30mm长,以便撕开时加紧试片。
焊接质量应满足无飞溅,表面无严重过热,压坑深度约为板厚的10~15%。
在虎钳上用铰杠撕开。
对于1.5+1.5试片,熔核直径应为6.5~7.0mm,否则应重新调整焊接规范。
3、在选定规范的基础上,增大焊接电流以获得最大临界熔核直径=1.15~1.2d h时,可认为所选的即为最佳规范。
否则应重新调整所选的规范。
dm(三)焊接1、观察焊接电流对于焊点质量的影响在已选定的最佳规范基础上,固定其他参数值不变,只改变焊接电流进行实验。
电流从小到大至少应选6~8个不同的值,最小电流可选6KA左右,最大电流值应超过13KA。
用所选的最小电流值进行焊接应出现未焊透,最好此时仅有很小的核心,但又不产生脱焊,最大电流值焊成的焊点,应产生较严重的飞溅。
每改变一次电流值,需焊4对试片,其中一对试片焊6个焊点,取中间三个焊点作低倍金相磨片,另外三对试片焊单点,作位剪强度试验。
焊接时,用HDB——1型电流测量仪测量焊接电流及通电时间,将实验结果填入下表中。
2、观察焊接时间对于焊点质量的影响在已选定最佳规范的基础上,固定其他参数值不变,只改变焊接时间进行实验。
焊接时间至少应选6~8个不同的值,最短焊接时间可选5~6周波,最长焊接时间应选30周波以上。
最短焊接时间的实验焊点,必须保证出线未焊透,最好只有很小的核心,但不应该出现脱焊。
另外应有两个实验点使熔核直径达饱和值。
每改变一次t w,焊4对试片,其中一对试片焊5个焊点,取中间三个焊点作低倍金相磨片。
另外三对试片焊点单点,作拉剪强度试验。
在已选定最佳规范的基础上,固定其他参数不变,只改变电极压力进行实验。
电极压力至少应选6—8个不同的值。
最小电极压力值可选980N 左右。
最大电极压力应选9800N 以上。
采用最小电极压力应能产生较大铁飞溅;而最大电极压力的实验焊点,应产生未焊透,最好只有很小的核心。
每改变一次电极压力值,焊4对试片,其中一对试片焊5个焊点,取中间三个焊点作低倍金相磨片。
另外3对试片焊单点,作拉剪强度试验。
将实验结果填入表5—3中。
在以上的实验过程中,应注意监视各规范参数波动情况及观察焊接现象,特别是焊点表面压坑,颜色深浅及飞溅等。
将观察的结果填入相应的表中。
焊接时,用焊接电流测量仪测量焊接电流及焊接时间。
焊接电流波动较大及焊接时间有变化的焊点,不应用来作金相磨片。
(四)制作金相试片(五)熔核尺寸的测量将制作好的金相试片放在低倍显微镜下观察,以测量熔核直径D h 、一块板的熔核高度a及塑性环直径D 。
焊透率A (%)=δα%。
低碳钢的过热区的熔化核心不太容易区分,测量时要仔细分辨。
在低倍显微镜下,一般有二圈,外圈颜色较深时过热区、核心尺寸应以内圈为准。
塑性环是指在两块结合面上被加热到高温位又未熔化,在电极压力作用下进行再结晶并连成整体的部位,如图5—10所示。
图5—10 熔核及塑性环示意图(六)拉剪强度实验1、选拉力试验机的量程及配重。
本实验试件的强度约为9800N ,所以应选择2t 的量程及配重(LJ —5000型拉力试验机用B 盘)。