当前位置:文档之家› 高频电子线路课程设计-同步检波器设计[新版]

高频电子线路课程设计-同步检波器设计[新版]

高频电子线路课程设计-同步检波器设计[新版] 同步检波器摘要振幅调制信号的解调过程称为检波。

有载波振幅调制信号的包络直接反映调制信号的变化规律,可以用二极管包络检波的方法进行检波。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变换规律,无法用包络检波进行解调,所以要采用同步检波方法。

同步检波器主要是用于对DSB和SSB信号进行解调(当然也可以用于AM)。

它的特点是必须加一个与载波同频同相的恢复载波信号。

外加载波信号电压加入同步检波器的方法有两种。

利用模拟乘法器的相乘原理,实现同步检波是很简单的,利用抑制载波的双边带信号V(t),和输入的同步信号(即载波信号)V(t),经过乘法器相乘,sc可得输出信号,实现了双边带信号解调课程设计作为高频电子线路课程的重要组成部分,目的是一方面使我们能够进一步理解课程内容,基本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手能力以及分析、解决问题的能力。

另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。

通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。

通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。

同步检波器功能分析根据高频电子线路理论分析,双边带信号DSB,就是抑制了载波后的调制信号,它的有用信号成分以边带形式对称地分布在被抑制载波的两侧。

由于有用信号所在的双边带调制信号的上、下边频功率之和只有载波功率的一半,即它只占整个调幅波功率1/3,实际运用中,调制度在0.1,1之间变化,其平均值仅为0.3,所以边频所占整个调幅波的功率还要小。

ma为了节省发射功率和提高有限频带资源的利用率,一般采用传送抑制载波的单边带调制信号SSB,单边带调制信号已经包含了所有有用信号成分,电视信号采用残留单边带发送图像的调幅信号就是其中一例。

而要实现对抑制载波的双边带调制信号DSB或单边带调制信号SSB进行解调,检出我们所需要的调制有用信号,不能用普通的二极管包络检波电路,而需要用同步检波电路。

同步检波电路与包络检波不同,检波时需要同时加入与载波信号同频同相的同步信号。

利用乘法器可以实现调幅波的乘积检波功能,普通调幅电压乘积器的原理框图如图2.1所示。

图2.1普通调幅电压乘积器原理框图U(t) 图2.1中,设输入信号为普通调幅信号: AMU,U(1,mcos,t)cos,t (2.1)AMXMayx限幅器输出为等幅载波信号 ,乘法器将两输入信号进行相乘后输出信号为:v(t),Kv(t)v(t) oEsc(2.2)(条件:为大信号) V,V,28mA,v,vxcys再通过低通滤波器作为乘法器的负载,将所有高频分量去除,并用足够大的电容器隔断直流分量,就可以得到反映调制规律的低频电压。

设计方案根据功能分析,可知同步检波必须外加一个与载波同频同相的恢复载波信号。

同步检波器原理这种方法是将外加载波信号电压与接收信号在检波器中相乘,再经过低通滤波器,最后检出原调制信号,如图2.2所示。

图2.2乘积型同步检波器设输入的已调波为载波分量被抑制的DSB信号u为: 1u,Ucos,tcos,t (2.3)11u,Ucos(,t,,) 本地载波电压: (2.4)ccc,,, 上两式中,,即本地载波的角频率等于输入信号的角频率,它们的相位不一定c1u,UUcos,tcos,tcos(,,,)相同 (2.5)21C11,低通滤波器滤除2附近的频率分量后,得到频率为的低频信号:,11u,UUcos,cos,t (2.6)o1C2, 由上式可见,低频信号的成正比。

当=0时,低频信号电压最大,随着相位差变cos,大,输出电压变小。

所以我们不但要求本地载波与输出信号载波的角频率必须相等。

方案集成MC1496同步检波器集成MC1496同步检波器特点: R,R,R对压控吉尔伯特电路T,T偏置,并防止T,123141T进入饱和,其他电阻保证T,T工作在放大区;,12V单电源供电,能采用电阻分压网络; 4 56为很小的信号,所以v即可以得到线性检波. R,100,E2s元器件选择根据上述对比,采用乘积型同步检波器。

此电路中最关键的电子元件是乘法器,这里我们选择的是集成模拟乘法器,集成模拟乘法器是完成两个模拟信号(电流或电压)相乘的电子器件。

采用集成模拟乘法器实现上述功能比采用分立器件要简单的多,而且性能优越。

从价格和性能的角度我们选择MC1496芯片实现模拟乘法器功能。

MC1496是爽平衡四象限模拟乘法器,VT1、VT2与VT3、VT4组成双差分对放大器。

其内部结构如图3.1所示。

图3.1 MC1496的内部电路及引脚图静态工作点设置MC1496可以采用单电源供电,也可以采用双电源供电。

器件的静态工作点由外接元件确定。

,、静态偏置电压的确定静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集—基极间的电压应大于或等于2V,小于或等于最大允许工作电压。

根据MC1496的特性参数,对于图7-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即u,u,u,u,u,u (3.1)8101461215V,(u,u),(u,u),2V,612810,15V,(u,u),(u,u),2.7V (3.2),81014,15V,(u,u),u,2.7V145,,、静态偏置电压的确定一般情况下,晶体管的基极电流很小,对于图7-1(a),三对差分放大器的基极电流、I8、和可以忽略不记,因此器件的静态偏置电流主要由恒流源的值确定。

当器件为IIII10014单电源工作时,引脚14接地,5脚通过一电阻R接正电源(+U的典型值为+12V),由于I5CC0是I的镜像电流,所以改变电阻R可以调节I的大小,即 550 P=2I(V-V)+I(V-V) (3.3) D5*******根据MC1496的性能参数,器件的静态电流应小于4mA,一般I=I=1mA。

器件的总散耗功率可o5以由下式估算出P应小于器件的最大散耗功率为33mW。

D调幅信号发生器要实现同步检波,首先应该得到DSB信号。

这里采用将高频载波信号与低频调制信号根据公式2.1可知,两者像乘的结果中包含我们所需的高频已调信号cos(w+Ω)t或cos(w-Ω)t,即可将低频信号频谱搬移到高频端,从而实现调制。

图3.2 调幅信号发生电路原理图图3.2中乘法器采用模拟乘法器MC1496及外接偏置电路、旁路电路组成。

其内部结构如图3.3所示。

芯片2 3管脚之间接入1kΩ负反馈电阻,以扩展调制信号的线性动态范围,其阻值越大,线性范围增大,但乘法器的增益随之减小。

电阻R9、R10提供静态偏置电压,保证乘法器内部的各个晶体管的工作在放大状态。

电阻R1、R2及滑动变阻器R组成平衡调P节电路,改变滑动变阻器的值可以使乘法器实现抑制载波的振幅调制或有载波的振幅调制。

调节此滑动变阻器可以改善波形的对称型,为了得到抑制载波双边带信号可将滑动变阻器调制50%。

图3.3 MC1496构成的调幅器同步检波电路根据公式2.3可知,要实现同步检波需将与高频载波同频的同步信号与已调信号相乘,,实现同步解调。

经过低通滤波器滤除2附近的频率分量后,得到频率为Ω的低频信号:11u,UUcos,cos,t (3.4)o1C2同步检波亦采用模拟乘法器MC1496将同步信号与已调信号相乘,其电路图如图3.5所vvvv示。

端输入同步信号或载波信号,端输入已调波信号,输出端接有电阻R、C组116yxcs成的低通滤波器和1uF的隔直电容,所以该电路对有载波调幅信号及抑制载波的调幅信号均可实现解调,但要合理的选择低通滤波器的截止频率。

图3.5 同步检波电路调节平衡电位器RP,使m,100%uUu,0输出,即为平衡状态.再从端输入有载波的调制信号。

调制度,这时乘ys0'UtUtUtC法器的输出经低通滤波器后的输出,经隔直电容后的输出的波形分别,,,,,,0,80UtU如图3.6(a)所示。

调节电位器RP可使输出波形的幅度增大,波形失真减小。

若,,0sUt为抑制载波的调制信号,经MC1496同步检波后的输出波形如图所示。

,,n电路总图根据上述单元电路设计从而得到整体电路图,如图4.1所示。

限于尺寸大小在这里将调幅信号发生器发生器电路封装起来,如图中DSB模块,其内部结构如图4.2所示。

图4.1 同步检波整体电路图图4.2 DSB模块内部结构工作原理在模拟乘法器MC1496的一个输入端输入振幅调制信号如抑制载波的双边带信号,,,,Ut,Ucos,tcos,t,另一输入端输入同步信号(即载波信号)Ut,Ucos,t,经Ssmcccmc乘法器相乘,由式(7-9)可得输出信号U(t)为 0 Ut,KUtUt,,,,,,oEsc111,,,,,KUUcos,t,KUcos,2,,t,KUU2,,,tEsmcmEsmcEsmcmc244U,UU,U,26mV(条件:,为大信号) (5.1)ySxC11v(t),Vcos(,,,)t,,,,Ut,Ucos,,t,ssmcSsmc22上式中,第一项是所需要的低频调制信号分量,后两项为高频分量,可用低通滤波器滤掉,从而实现双边带信号的解调。

若输入信号为单边带振幅调制信号,即,则乘法器的输为:,,,,UtUtS0 1,,Ut,KUUcos2,,tcost,,,,oEsmcmcC2 (5.2)11,,,KUcos,t,KUU2,,,tEsmEsmcmc44上式中,第一项是所需要的低频调制信号分量,第二项为高频分量,也可以被低通滤波器滤掉。

如果输入信号为有载波振幅调制信号,同步信号为载波信号,利用乘法器的,,,,UtUtSC相乘原理,同样也能实现解调。

设, utuwt,cos UtUmtwt,,,1coscos,,,,,,,,,,ccmcssmc则输出电压ut为,,0utKutut, ,,,,,,0Esc111KuuKmutKuuwt,,, coscos2,EsmcmEcmEsmcmc2221Kmuuwct,,+cos2 ,,Esmcm41Kmuuwct,,cos2+ ,,Esmcm4uU, (条件:uUmV,,26,为大信号) (5.3) ysxc上式中,第一项为直流分量,第二项是所需要的低频调制信号分量,后面三项为高频分量,利用隔直电容及低通滤波器可滤掉直流分量及高频分量,从而实现了有载波振幅调制信号的解调。

结果分析调节如图3.3电路中R的滑动比例可以调节调幅信号的调幅度,将比例调到80%即可得到如图5.1(b)P的AM信号。

相关主题