第2节 气体实验定律及应用知识梳理一、气体分子运动速率的统计分布 气体实验定律 理想气体 1.气体分子运动的特点(1)分子很小,间距很大,除碰撞外不受力.(2)气体分子向各个方向运动的气体分子数目都相等.(3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强(1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力.(2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p =FS.(3)常用单位及换算关系:①国际单位:帕斯卡,符号:Pa,1 Pa =1 N/m 2.②常用单位:标准大气压(atm);厘米汞柱(cmHg).③换算关系:1 atm =76 cmHg =1.013×105 Pa ≈1.0×105 Pa. 4.气体实验定律(1)等温变化——玻意耳定律:①内容:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比. ②公式:p 1V 1=p 2V 2或pV =C (常量). (2)等容变化——查理定律:①内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比.②公式:p 1p 2=T 1T 2或pT=C (常量).③推论式:Δp =p 1T 1·ΔT .(3)等压变化——盖—吕萨克定律:①内容:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比.②公式:V 1V 2=T 1T 2或VT=C (常量).③推论式:ΔV =V 1T 1·ΔT .5.理想气体状态方程(1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在.②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: p 1V 1T 1=p 2V 2T 2或pVT =C (常量). 典例突破考点一 气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素(1)宏观上:决定于气体的温度和体积.(2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强.(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等. 4.加速运动系统中封闭气体压强的求法选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解. 例1.如图中两个汽缸质量均为M ,内部横截面积均为S ,两个活塞的质量均为m ,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A 、B ,大气压为p 0,求封闭气体A 、B 的压强各多大?解析:题图甲中选m 为研究对象. p A S =p 0S +mg得p A =p 0+mgS题图乙中选M 为研究对象得p B =p 0-MgS.答案:p 0+mg S p 0-MgS例2.若已知大气压强为p 0,在下图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强.解析:在甲图中,以高为h 的液柱为研究对象,由二力平衡知p 气S =-ρghS +p 0S所以p 气=p 0-ρgh在图乙中,以B 液面为研究对象,由平衡方程 F 上=F 下有:p A S +p h S =p 0S p 气=p A =p 0-ρgh在图丙中,仍以B 液面为研究对象,有 p A +ρgh sin 60°=p B =p 0所以p 气=p A =p 0-32ρgh在图丁中,以液面A 为研究对象,由二力平衡得 p 气S =(p 0+ρgh 1)S ,所以p 气=p 0+ρgh 1 答案:甲:p 0-ρgh 乙:p 0-ρgh丙:p 0-32ρgh丁:p 0+ρgh 1例3.如图所示,光滑水平面上放有一质量为M 的汽缸,汽缸内放有一质量为m 的可在汽缸内无摩擦滑动的活塞,活塞面积为S .现用水平恒力F 向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p .(已知外界大气压为p 0)解析:选取汽缸和活塞整体为研究对象,相对静止时有: F =(M +m )a再选活塞为研究对象,根据牛顿第二定律有: pS -p 0S =ma解得:p =p 0+mFS (M +m ).答案:p 0+mFS (M +m )考点二 气体实验定律及理想气体状态方程1.理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2⎩⎪⎨⎪⎧温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T2(盖—吕萨克定律)2.几个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT(2)盖—吕萨克定律的推论:ΔV =V 1T 1ΔT(3)理想气体状态方程的推论:p 0V 0T 0=p 1V 1T 1+p 2V 2T 2+……例4.如图,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m 1=2.50 kg ,横截面积为S 1=80.0 cm 2;小活塞的质量为m 2=1.50 kg ,横截面积为S 2=40.0 cm 2;两活塞用刚性轻杆连接,间距保持为l =40.0 cm ;汽缸外大气的压强为p =1.00×105 Pa ,温度为T =303 K .初始时大活塞与大圆筒底部相距l2,两活塞间封闭气体的温度为T 1=495 K .现汽缸内气体温度缓慢下降,活塞缓慢下移,忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g 取10 m/s 2.求:(1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度; (2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.解析 (1)设初始时气体体积为V 1,在大活塞与大圆筒底部刚接触时,缸内封闭气体的体积为V 2,温度为T 2.由题给条件得V 1=S 1⎝⎛⎭⎫l 2+S 2⎝⎛⎭⎫l -l 2① V 2=S 2l ②在活塞缓慢下移的过程中,用p 1表示缸内气体的压强,由力的平衡条件得 S 1(p 1-p )=m 1g +m 2g +S 2(p 1-p )③ 故缸内气体的压强不变.由盖-吕萨克定律有V 1T 1=V 2T 2④ 联立①②④式并代入题给数据得 T 2=330 K ⑤(2)在大活塞与大圆筒底部刚接触时,被封闭气体的压强为p 1.在此后与汽缸外大气达到热平衡的过程中,被封闭气体的体积不变.设达到热平衡时被封闭气体的压强为p ′,由查理定律,有 p ′T =p 1T 2⑥ 联立③⑤⑥式并代入题给数据得 p ′=1.01×105 Pa ⑦答案 (1)330 K (2)1.01×105 Pa例5.一氧气瓶的容积为0.08 m 3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m 3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.解析:设氧气开始时的压强为p 1,体积为V 1,压强变为p 2(2个大气压)时,体积为V 2.根据玻意耳定律得p 1V 1=p 2V 2①重新充气前,用去的氧气在p 2压强下的体积为 V 3=V 2-V 1②设用去的氧气在p 0(1个大气压)压强下的体积为V 0,则有p 2V 3=p 0V 0③ 设实验室每天用去的氧气在p 0下的体积为ΔV ,则氧气可用的天数为 N =V 0/ΔV ④联立①②③④式,并代入数据得 N =4(天)⑤ 答案:4天考点三 气体状态变化的图象问题一定质量的气体不同图象的比较例6.为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p 和体积V 关系的是( )解析:选B.等温变化时,根据pV =C ,p 与1V 成正比,所以p -1V图象是一条通过原点的直线,故正确选项为B. 当堂达标1.如图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆块A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆块的质量为M ,不计圆块与容器内壁之间的摩擦,若大气压强为p 0,则被圆块封闭在容器中的气体的压强p 为________.解析:对圆块进行受力分析:重力Mg ,大气压的作用力p 0S ,封闭气体对它的作用力pScos θ,容器侧壁的作用力F 1和F 2,如图所示.由于不需要求出侧壁的作用力,所以只考虑竖直方向合力为零,就可以求被封闭的气体压强.圆块在竖直方向上受力平衡,故p 0S +Mg =pS cos θ·cos θ,即p =p 0+MgS.答案:p 0+MgS2.某压缩式喷雾器储液桶的容量是5.7×10-3 m 3.往桶内倒入4.2×10-3 m 3的药液后开始打气,打气过程中药液不会向外喷出.如果每次能打进2.5×10-4m 3的空气,要使喷雾器内药液能全部喷完,且整个过程中温度不变,则需要打气的次数是( )A .16次B .17次C .20次D .21次解析:选B.设大气压强为p ,由玻意耳定律,npV 0+p ΔV =pV ,V 0=2.5×10-4m 3,ΔV =5.7×10-3m 3-4.2×10-3 m 3=1.5×10-3m 3,V =5.7×10-3m 3,解得n =16.8次≈17次,选项B 正确.3.(多选)一定质量理想气体的状态经历了如图所示的ab 、bc 、cd 、da 四个过程,其中bc 的延长线通过原点,cd 垂直于ab 且与水平轴平行,da 与bc 平行,则气体体积在( )A .ab 过程中不断增大B .bc 过程中保持不变C .cd 过程中不断增大D .da 过程中保持不变解析:选AB.首先,因为bc 的延长线通过原点,所以bc 是等容线,即气体体积在bc 过程中保持不变,B 正确;ab 是等温线,压强减小则体积增大,A 正确;cd 是等压线,温度降低则体积减小,C 错误;连接aO 交cd 于e ,如图所示,则ae 是等容线,即V a =V e ,因为V d <V e ,所以V d <V a ,da 过程中体积不是保持不变,D 错误.4.已知湖水深度为20 m ,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10 m/s 2,ρ水=1.0×103 kg/m 3)( )A .2.8倍B .8.5倍C .3.1倍D .2.1倍 解析:选C.一标准大气压约为10 m 高的水柱产生的压强,所以气泡在湖底的压强p 1约为3.0×105Pa ,由理想气体状态方程得,p 1V 1T 1=p 2V 2T 2,而T 1=(4+273)K =277 K ,T 2=(17+273)K =290 K ,温度基本不变,压强减小为原来的13,体积扩大为原来的3倍左右,C 项正确.5.如图所示,上端开口的光滑圆柱形汽缸竖直放置,横截面积为40 cm 2的活塞将一定质量的气体和一形状不规则的固体A 封闭在汽缸内.在汽缸内距缸底60 cm 处设有a 、b 两限制装置,使活塞只能向上滑动.开始时活塞搁在a 、b 上,缸内气体的压强为p 0(p 0=1.0×105 Pa 为大气压强),温度为300 K .现缓慢加热汽缸内气体,当温度为330 K 时,活塞恰好离开a 、b ;当温度为360 K 时,活塞上移了4 cm.g 取10 m/s 2.求活塞的质量和物体A 的体积.解析:设物体A 的体积为ΔV ,T 1=300 K ,p 1=1.0×105 Pa ,V1=60×40 cm 3-ΔV ,T 2=330 K ,p 2=⎝⎛⎭⎫1.0×105+mg40×10-4Pa ,V 2=V 1,T 3=360 K ,p 3=p 2,V 3=64×40 cm 3-ΔV . 由状态1到状态2为等容过程,则p 1T 1=p 2T 2,代入数据得m =4 kg.由状态2到状态3为等压过程,则V 2T 2=V 3T 3,代入数据得ΔV =640 cm 3. 答案:4 kg 640 cm 3。