当前位置:文档之家› 音圈电机技术原理

音圈电机技术原理

音圈电机技术原理音圈电机技术原理2011年05月25日音圈电机(Vo ice Co il A ctuato r) 是一种特殊形式的直接驱动电机. 具有结构简单、体积小、高速、高加速、响应快等特性. 其工作原理是, 通电线圈(导体) 放在磁场内就会产生力, 力的大小与施加在线圈上的电流成比例. 基于此原理制造的音圈电机运动形式可以为直线或者圆弧.近年来, 随着对高速、高精度定位系统性能要求的提高和音圈电机技术的迅速发展, 音圈电机不仅被广泛用在磁盘、激光唱片定位等精密定位系统中[ 1 ] , 在许多不同形式的高加速、高频激励上也得到广泛应用.如, 光学系统中透镜的定位; 机械工具的多坐标定位平台; 医学装置中精密电子管、真空管控制; 在柔性机器人中, 为使末端执行器快速、精确定位, 还可以用音圈电机来有效地抑制振动[ 2 ].但有关音圈电机详细技术原理的文献还不多见, 为此, 本文将系统讨论音圈电机的基本原理, 并阐述其选型方法和应用场合.1 音圈电机的基本原理1. 1 磁学原理音圈电机的工作原理是依据安培力原理, 即通电导体放在磁场中, 就会产生力F , 力的大小取决于磁场强弱B , 电流I , 以及磁场和电流的方向(见图1). 如果共有长度为L 的N 根导线放在磁场中, 则作用在导线上的力可表示为F = kB L IN , (1)式中 k 为常数.由图1 可知, 力的方向是电流方向和磁场向量的函数, 是二者的相互作用. 如果磁场和导线长度为常量, 则产生的力与输入电流成比例. 在最简单的音圈电机结构形式中, 直线音圈电机就是位于径向电磁场内的一个管状线圈绕组(见图2). 铁磁圆筒内部是由永久磁铁产生的磁场, 这样的布置可使贴在线圈上的磁体具有相同的极性. 铁磁材料的内芯配置在线圈轴向中心线上, 与永久磁体的一端相连, 用来形成磁回路. 当给线圈通电时, 根据安培力原理, 它受到磁场作用, 在线圈和磁体之间产生沿轴线方向的力. 通电线圈两端电压的极性决定力的方向.将圆形管状直线音圈电机展开, 两端弯曲成圆弧, 就成为旋转音圈电机. 旋转音圈电机力的产生方式与直线音圈电机类似. 只是旋转音圈电机力是沿着弧形圆周方向产生的, 输出转矩见图3.1. 2 电子学原理音圈电机是单相两极装置. 给线圈施加电压则在线圈里产生电流, 进而在线圈上产生与电流成比例的力, 使线圈在气隙内沿轴向运动. 通过线圈的电流方向决定其运动方向. 当线圈在磁场内运动时,会在线圈内产生与线圈运动速度、磁场强度、和导线长度成比例的电压(即感应电动势). 驱动音圈电机的电源必须提供足够的电流满足输出力的需要, 且要克服线圈在最大运动速度下产生的感应电动势, 以及通过线圈的漏感压降.1. 3 机械系统原理音圈电机经常作为一个由磁体和线圈组成的零部件出售. 线圈与磁体之间的最小气隙通常是(0. 254~ 0. 381) mm , 根据需要此气隙可以增大, 只是需要确定引导系统允许的运动范围, 同时避免线圈与磁体间摩擦或碰撞. 多数情况下, 移动载荷与线圈相连, 即动音圈结构. 其优点是固定的磁铁系统可以比较大, 因而可以得到较强的磁场; 缺点是音圈输电线处于运动状态, 容易出现断路的问题. 同时由于可运动的支承, 运动部件和环境的热接触很恶劣, 动音圈产生的热量会使运动部件的温度升高,因而音圈中所允许的最大电流较小. 当载荷对热特别敏感时, 可以把载荷与磁体相连, 即固定音圈结构.该结构线圈的散热不再是大问题, 线圈允许的最大电流较大, 但为了减小运动部分的质量, 采用了较小的磁铁, 因此磁场较弱[ 3 ].直线音圈电机可实现直接驱动, 且从旋转转为直线运动无后冲、也没有能量损失. 优选的引导方式是与硬化钢轴相结合的直线轴承或轴衬. 可以将轴?轴衬集成为一个整体部分. 重要的是要保持引导系统的低摩擦, 以不降低电机的平滑响应特性.典型旋转音圈电机是用轴?球轴承作为引导系统, 这与传统电机是相同的. 旋转音圈电机提供的运动非常光滑, 成为需要快速响应、有限角激励应用中的首选装置. 比如万向节装配中.2 音圈电机主要结构形式及材料选用2. 1 传统结构形式如图2 所示, 在音圈电机的传统结构中, 有一个圆柱状线圈, 圆柱中心杆与包围在中心杆周围的永图4 传统音圈电机结构图Fig. 4 Conventional vo ice co ilactuato r structure久磁体形成的气隙, 在磁体和中心杆外部罩有一个软铁壳. 线圈在气隙内沿圆柱轴向运动. 图4 为此传统结构音圈电机的轴测图.依据线圈行程, 线圈的轴向长度可以超出磁铁轴向长度, 即长音圈结构. 而有时根据行程, 磁体又可以比线圈长, 即短音圈结构. 长音圈结构中的音圈长度要大于工作气隙长度与最大行程长度之和; 而短音圈结构中的工作气隙长度大于音圈长度与最大行程长度之和. 长音圈结构充分利用了磁密, 但由于音圈中只有一部分线圈处于工作气隙中, 所以电功率利用不足; 短音圈结构则正好相反. 两种结构相比, 前者可以允许较小的磁铁系统, 因此音圈电机的体积也可以比较小; 后者则体积较大,但功耗较小, 可以允许较大音圈电流. 与短线圈配置相比, 长音圈配置可以提供更好的力2功率比, 且散热好. 而短音圈配置电时间延时较短, 质量较小, 且产生的电枢反动力小.2. 2 集中通量结构形式在运动控制中, 有时需要的力比传统移动音圈电机所能提供的力要大, 传统结构形式的音圈电机不图5 集中磁通技术的音圈电机结构图Fig. 5 F lux2focus design vo ice co il能满足要求. 为解决此问题, 需要提高音圈电机工作效率, 为此应合理设计其结构, 尽量减少磁路漏磁. 设计音圈电机时总是希望磁钢的磁力线尽可能多地通过气隙, 以提高气隙磁密, 从而产生尽可能大的磁力[ 3 ].采用集中磁通技术, 能够使制造的电机气隙磁密等于甚至大于磁体中的剩余量. 基于该技术的电机内部是一个一端封闭的空心圆柱磁铁(见图5). 圆柱内部形成N极, 圆柱的外部形成S极. 紧贴磁体外部由一个也有一端封闭的软铁圆柱壳罩住, 软铁壳的开口端伸出磁体开口端.由软铁制成的圆柱芯在磁体内部紧紧贴合, 并从其开口端伸出. 壳的内表面与圆柱芯的外表面之间的环形空间形成气隙, 圆柱状线圈可在气隙中沿轴向运动. 该电机结构形式允许磁体面大于气隙面. 这样的设计不会引起泄漏, 几乎从磁体表面发出的所有磁力线都通过气隙.2. 3 磁力交叉存取结构形式若要求在尽可能小的直径情况下, 获得最高输出力, 可采用专有的交叉存取磁电路技术. 与传统结构以及集中磁通量结构相比, 其性能特性不变, 而轴向尺寸更长, 但直径尺寸减小, 其磁体质量较小,但线圈趋于更重. 交叉存取磁电路音圈的突出优点是线圈漏感较小, 电时间延迟非常短.2. 4 音圈电机的材料选用选择音圈电机材料需要考虑系统性能、工作环境、加工和成本等因素. 线圈一般是用铜或铝线缠在非铁磁的绕线筒上, 外部涂上一层聚合体薄膜来绝缘. 铝线的传导率是铜线的一半, 但重量是铜线的三分之一. 可根据具体散热和使用情况进行选择.大部分永久磁体材料是硬磁铁, 钕铁硼和钴化钐. 用来容纳线圈的磁体气隙必须足够大, 也就是磁体必须在较低的载重线上工作, 通常B ?H = 1. 0~ 2. 0. 另外磁材料应当具有高抗磁力和相当好的退磁曲线, 以提高磁路的工作效率.3 音圈电机的选型与应用3. 1 直线音圈电机的选择由4 个参数选择直线音圈电机: 所需峰值力(F p ) ; 所需平均连续力(FRM S) ; 直线速度(v ) ; 总行程或移动距离(D ).3. 1. 1 需要的峰值力F p峰值力是载荷力FL , 摩擦力F F , 及质量加速度引起的力Fm 的总和.F p = FL + F F + Fm. (2)图6 点对点运动中梯形速度图图7 点对点运动中三角形速度图Fig. 6 T rapezo idalmove fo r Fig. 7 T riangular move fo rpo int2to po int mo tion po int2to po int mo tion观察各分量, 载荷引起的力FL 持续作用在电机上. 摩擦力F F 由完成运动的装配体的机械配置决定, 如轴承, 油脂, 联接, 面接触等因素.质量加速度引起的力Fm , 它由载荷(包括电机线圈) 的质量m L + C和负载加速度a 决定.Fm = m L + C × a. (3)3. 1. 2 需要的平均连续力FRM SRM S (Roo t2M ean2Square) 力用来估计应用中的平均连续力. 它由下面公式描述FRM S =(F 2p t1 + (FL + F F ) 2 t2 + (Fm - FL - F F ) 2 t3t1 + t2 + t3 + t4, (4)式中 t1是加速时间; t2是匀速运行时间; t3是减速时间, 而t4是运动过程中的停顿时间.3. 1. 3 直线速度图6, 图7 给出了点到点定位运动中额定速度与平均速度的关系. 图6中, ( i) 加速部分:vmax+ 02=(1?4)Dt1, vmax= D2t1; ( ii) 整个行程: v TRA P=[ (1?4 )D + (1?2)D + (1?4)D ]( t1+ t2+ t3) = D3t1; ( iii) vmaxvTRA P=D ?2 t1D ?3 t1=32,即vmax = 1. 5vTRA P; 图7中( i) 加速部分:vmax+ 02=(1?2)Dt1, vmax = D2t1; ( ii) 整个行程: vTR I =[ (1?2)D + (1?2)D ]( t1+ t3) = D2t1; ( iii) vmaxvTRAP=D t1D ?2t12, 即vmax= 2vTR I.式中 vmax= 电机额定工作速度, mm?s; v TRAP= 梯形运动需要的电机平均速度, mm?s; vTR I= 三角形运动需要的电机平均速度, mm ?s; D = 移动线圈总行程; t1= 加速时间, s; t2= 运行时间, s; t3= 减速时间, s; t4= 停顿时间, s.3. 1. 4 行程行程指运行的一端点到另一端点的总位移, 或者以行程中点为参考点的正、负位移. 音圈的行程范围从几微米到大约102 mm. 力和行程通常成反比.3. 2 旋转音圈电机的选型合理选择直线音圈电机需要的4 个参数, 对于旋转音圈电机同样适用.即: 所需峰值转矩, T P; 所需平均连续转矩, T RM S; 角速度, X; 角位移或行程. 旋转情况下加速度与力的关系为T J = J L + C × a, (5)式中 T J 是转矩; J L + C是电机线圈和载荷的总惯量; a 是载荷的角加速度.3. 3 音圈电机的应用音圈电机的电和机械时间延时短, 响应快, 并具有线性力2行程特性, 和较高的电2机能量转化率.这些属性使音圈电机具有平滑可控性, 成为应用在各种型式伺服模式中的理想装置. 而且作为精密快速机电控制系统的重要执行部件, 音圈电机更适用于要求快速高精度定位的控制系统.图8 HDD 的顶部视图Fig. 8 Top view of HDD如在光盘和硬盘驱动中, 音圈电机得到广泛应用. 对于光盘驱动电机, 重要的是高的灵敏性和宽的伺服带宽[ 4 ] , 音圈电机无疑是理想的选择. 光盘表面的反馈元件从光盘表面读取信息并动态地修正音圈电机的位置, 以达到精确定位的目的.在硬盘驱动中也大多应用音圈电机为磁盘头提供运动, 并在磁盘表面对磁盘头进行定位[ 5 ]. 即为磁盘表面的读?写记录头提供转矩, 并对其进行定位[ 6 ] (见图8). 用音圈电机可以满足硬盘驱动系统对高共振频率的需要[ 7 ].近年来, 随着半导体元件集成化程度的提高, 对用于半导体加工的X Y 坐标型精密定位工作台的操作精度要求达到了亚微米级[ 8 ]. 为抑制工作台振动, 使其定位更精确, 常应用音圈电机进行驱动. 音圈电机也可用在半导体焊接设备的焊头上.另外, 在光学和测量系统、光学装配以及航空航天方面音圈电机都有广泛的应用.4 结论基于安培力原理制造的音圈电机, 是简单的、无方向转换的电磁装置. 且可靠性高, 能量转换效率高, 越来越多地用在各种直线和旋转运动系统中. 加上音圈电机的快速、平滑、无嵌齿、无滞后响应等特性, 使音圈电机可以很好地应用在需要高速、高加速度、直线力或转矩响应的伺服控制中.。

相关主题