当前位置:文档之家› 分辨率与精度

分辨率与精度

分辨率与精度的区别2010-10-07 10:28:37很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。

我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。

简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。

从定义上看,这两个量应该是风马牛不相及的。

(是不是有朋友感到愕然^_^)。

很多卖传感器的JS就是利用这一点来糊弄人的了。

简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。

那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。

当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。

我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!)所以在这里利用这个例子帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。

呵呵,希望对大家有用!^_^加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。

理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。

零件实际几何参数与理想几何参数的偏离数值称为加工误差。

加工精度与加工误差都是评价加工表面几何参数的术语。

加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。

加工精度高,就是加工误差小,反之亦然。

任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。

机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。

机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。

它们之间的差异称为加工误差。

加工误差的大小反映了加工精度的高低。

误差越大加工精度越低,误差越小加工精度越高。

加工精度包括三个方面内容:尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。

形状精度指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度。

位置精度指加工后零件有关表面之间的实际位置与理想精度就是结果值与结果真值的差值。

精度Accuracy 观测结果、计算值或估计值与真值(或被认为是真值)之间的接近程度。

每一种物理量要用数值表示时,必须先要制定一种标准,并选定一种单位(unit)。

标准及单位的制定,是为了沟通人与人之间对于物理现象的认识。

这种标准的制定,通常是根据人们对于所要测量的物理量的认识与了解,并且要考虑这标准是否容易复制,或测量的过程是否容易操作等实际问题。

由于各种物理量的标准的制定是人为的,因此需要经过一个社会或团体的公认,才会逐渐为人们普遍采用。

编辑本段等级精度的等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。

量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。

经常使用的的精度为2.5 、1.5 级,如果是1.0和0.5级的属于高精度,现在有的数字已经达到0.25级。

编辑本段相关资讯精度以下来源于中国仪器超市的资讯:世界性的测量标准起源于欧洲工业革命之后;法国科学院首先在1791 年决定用地球的大小来制定长度单位,定义一米为沿子午线由北极经巴黎至赤道的长度的一千万分之一。

于1889 年并按此规格铸造一白金米尺作为标准原器。

正式的国际标准化组织(International Organization for Standardization, 简称ISO ) 于1960 年成立,目前在国际间推行的度量衡标准称为国际标准单位( Systeme International d'Unit'es 简称公制单位,英文名称为International System of Units ),它是在1960 年国际度量衡大会(General Conference of Weights Measures, 简称CGPM ) 中决定采用并推行的。

在这套单位制度中,将物理量的单位分为基本单位、辅助单位、导出单位等三种。

而基本单位细分成七种,分别是:长度、质量、时间、电流、温度、物量(amount of substance)、亮度编辑本段国际标准制的基本单位量基本单位名称符号长度米(metre) m 质量千克(kilogram) kg 时间秒(second) s 电流安培(Ampere) A 温度开尔文(Kelvin) K 物质的量摩尔(mole) mol 亮度烛光(candela) cd 编辑本段地质学方面应用“精度”指野外地质现象能够在图上表示出来的详细程度和准确度。

详细程度指对地质现象反映的详细程度,比例尺愈大,反映的地质现象的尺寸界限愈小。

建筑地段的各种地质界限点在图上的误差不得超过3mm其它地段不应超过5mm 实际允许误差为上值乘比例尺分母。

精密测量最常用为尺寸,即长度单位,而长度方面在 1960 年采用氪原子 (Kr 86) 光波作为标准。

在 1983 年的第 17 届国际度量衡大会就将光速在真空中定义为一常数,即 299 , 792 , 458 公尺 / 秒,而 1 公尺就是光在 299 , 792 , 458 分之 1 秒内于真空中所走过的距离。

长度单位可区分成公制与英制等两种。

仪表的精度:精度是反映仪表误差大小的术语。

δ=(△max)/(Аmax)×100% (δ为精度等级;△max 为最大测量误差;Аmax为仪表量程。

)仪表的等级有:0.05,0.1,0.2,0.5,1.0,1.5,2.5脉冲当量相对于每一脉冲信号的机床运动部件的位移量称为脉冲当量,又称作最小设定单位。

脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲的方式输出。

这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调的进给脉冲,驱动电机运动。

一个脉冲所产生的坐标轴移动量叫做脉冲当量。

脉冲当量是脉冲分配的基本单位,按机床设计的加工精度选定,普通精度的机床一般取脉冲当量为:0.01mm,较精密的机床取0.001mm 或0.005mm 。

采用脉冲增量插补算法的数控系统,其坐标轴进给速度主要受插补程序运行时间的限制,一般为1~3m/min。

脉冲增量插补主要有逐点比较法、数据积分法、直线函数法等。

脉冲当量影响数控机床的加工精度,它的值取得越小,加工精度越高。

“脉冲当量”在学术文献中的解释 1、如果我们将飞锯车所走的距离与步进电机的功率脉冲Fs之比称为脉冲当量,则不同的齿轮配比可得到不同的脉冲当量.当脉冲当量一定时,则飞锯车所走的位移为步进电机的功率脉冲数与脉冲当量的乘积文献来源 2、伺服系统伺服系统也叫做执行机构它将数控装置的脉冲信号转换为机床运动部件相应的位移量称为脉冲当量.日线的驱动部分全部采用交流电气伺服系统与”脉冲当量”;相关的学术图片测量基础知识概要作者:迈锐测量技术有限公司测试计量基础知识测量技术是一门具有自身专业体系、涵盖多种学科、理论性和实践性都非常强的前沿科学。

而熟知测量技术方面的基本知识,则是掌握测量技能,独立完成对机械产品几何参数测量的基础。

1.1 测量的定义一件制造完成后的产品是否满足设计的几何精度要求,通常有以下几种判断方式。

测量:是以确定被测对象的量值为目的的全部操作。

在这一操作过程中,将被测对象与复现测量单位的标准量进行比较,并以被测量与单位量的比值及其准确度表达测量结果。

例如用游标卡尺对一轴径的测量,就是将被对象(轴的直径)用特定测量方法(用游标卡尺测量)与长度单位(毫米)相比较。

若其比值为30.52,准确度为±0.03mm,则测量结果可表达为(30.52±0.03)mm。

任何测量过程都包含:测量对象、计量单位、测量方法和测量误差等四个要素。

测试:是指具有试验性质的测量。

也可理解为试验和测量的全过程。

检验:是判断被测物理量是否合格(在规定范围内)的过程,一般来说就是确定产品是否满足设计要求的过程,即判断产品合格性的过程,通常不一定要求测出具体值。

因此检验也可理解为不要求知道具体值的测量。

计量:为实现测量单位的统一和量值准确可靠的测量。

1.2 测量基准测量基准是复现和保存计量单位并具有规定计量单位特性的计量器具。

在几何量计量领域内,测量基准可分为长度基准和角度基准两类。

长度基准:1983年第十七届国际计量大会根据国际计量委员会的报告,批准了米的新定义:即“一米是光在真空中在1/299 792 458秒时间间隔内的行程长度”。

根据米的定义建立的国家基准、副基准和工作基准,一般都不能在生产中直接用于对零件进行测量。

为了确保量值的合理和统一,必须按《国家计量检定系统》的规定,将具有最高计量特性的国家基准逐级进行传递,直至用于对产品进行测量的各种测量器具。

图1-1为长度(端度)计量检定系统表(简化)。

图1-1 长度计量检定系统表(简化)角度基准:角度量与长度量不同。

由于常用角度单位(度)是由圆周角定义的,即圆周角等于360°,而弧度与度、分、秒又有确定的换算关系,因此无需建立角度的自然基准。

1.3 量块量块是一种平行平面端度量具,又称块规。

它是保证长度量值统一的重要常用实物量具。

除了作为工作基准之外,量块还可以用来调整仪器、机床或直接测量零件。

一般特性:量块是以其两端面之间的距离作为长度的实物基准(标准),是一种单值量具,其材料与热处理工艺应满足量块的尺寸稳定、硬度高、耐磨性好的要求。

通常都用铬锰钢、铬钢和轴承钢制成。

其线胀系数与普通钢材相同,即为(11.5±1)×10-6 /℃,尺稳定性约为年变化量不超出±0.5~1μm/m。

结构:绝大多数量块制成直角平行六面体,如图1-2所示;也有制成φ20的圆柱体。

每块量块都有两个表面非常光洁、平面度精度很高的平行平面,称为量块的测量面(或称工作面)。

量块长度(尺寸)是指量块的一个测量面上的一点至与量块相研合的辅助体(材质与量块相同)表面(亦称辅助表面)之间的距离。

为了消除量块测量面的平面度误差和两测量面间的平行度误差对量块长度的影响,将量块的工作尺寸定义为量块的中心长度,即两个测量面的中心点的长度。

精度:量块按其制造精度分为五个“级”:00、0、1、2和3级。

相关主题