流变学:研究材料流动及变形规律的科学。
熔融指数:在一定的温度和负荷下,聚合物熔体每10min通过规定的标准口模的质量,单位g/10min。
假塑性流体:指无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体。
可回复形变:先对流变仪中的液体施以一定的外力,使其形变,然后在一定时间内维持该形变保持恒定,而后撤去外力,使形变自然恢复。
韦森堡效应&爬杆现象&包轴现象:当圆棒插入容器中的高分子液体中旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。
第2光滑挤出区:剪切速率持续升高,当达到第二临界剪切速率后,流变曲线跌落,然后再继续发展,挤出物表面可能又变得光滑,这一区域称为第二光滑挤出区挤出胀大&弹性记忆效应:指高分子被强迫挤出口模时,挤出物尺寸要大于口模尺寸,截面形状也发生变化的现象。
冷冻皮层:熔体进入冷模后,贴近模壁的熔体很快凝固,速度锐减,形成冷冻皮层法向应力效应:聚合物材料在口模流动中,由于自身的黏弹特性,大分子链的剪切或拉伸取向导致其力学性能的各向异性,产生法向应力效应。
松弛时间:是指物体受力变形,外力解除后材料恢复正常状态所需的时间。
Deborah数:松弛时间与实验观察时间之比。
《1时做黏性流体,》1时做弹性固体。
残余应力:构件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用于影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响称为残余应力。
表观粘度:非牛顿型流体流动时剪切应力和剪切速率的比值。
表观剪切黏度:表观粘度定义流动曲线上某一点τ与γ的比值。
入口校正:对于粘弹性流体,当从料筒进入毛细管时,由于存在一个很大的入口压力损失,因此需要通过测压力差来计算压力梯度时所进行的校正。
驻点:两辊筒间物料的速度分布中,在x’*处,物料流速分布中,中心处的速度=0,称驻点。
本构方程:描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。
幂律方程:用于描述非牛顿型流动行为的方程。
粘流活化能:E定义为每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。
第二光滑挤出区:当剪切速率继续增大时,熔体在模壁附近会出现“全滑动”,这时会得到表面光滑的挤出物,这一区域称为第二光滑挤出区。
Weissenberg数:第一法向应力差与剪切应力之比。
非牛顿指数:在入口收敛流动的边界流线微分方程中,用来表征熔体非牛顿特性的参数。
第一法向应力差:沿着流动方向受拉伸,拉抻了的分子链产生最大法向应力σ11,使流体处于紧张状态,像有收缩力作用,起到一个“箝住效应”;在此同时,由于剪切作用,另一方面会在垂直于流动方向(垂直于剪切面)产生正向推力σ22,两者之差就是第一法向应力差。
触变性流体:在恒温和恒定的切变速率下,粘度随时间递减的流体。
震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。
平衡转矩:胶料混炼时,转矩随物料的不断均化最终达到的平衡值。
拉伸粘度拉:伸应力与拉伸应变速率之比,表示流体对拉伸流动的阻力。
宾汉流体:与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动。
牙膏、油漆是典型的宾汉流体。
胀塑性流体:剪切速率很低时,流动行为与牛顿型流体基本相同,剪切速率超过某一临界后,随剪切速率增大,流动曲线弯向切应力坐标轴,剪切黏度增大,呈现“剪切变稠”的流体。
拉伸流动:指物料运动的速度方向在速度梯度方向平行。
冻结分子取向:因分子取向被冻结而产生的应力称冻结分子取向熔体破裂(破碎)现象:高分子熔体从口模挤出时,当挤出速度过高,超过某一临界剪切速率时,容易出现弹性湍流,导致流动不稳定,挤出物表面粗糙,随挤出速度的增大,可能分别出现波浪形,鲨鱼皮形,竹节形,螺旋形畸变,最后导致完全无规则的挤出物断裂,称为熔体破裂现象。
拖曳流:指对流体不加压力而靠边界运动产生力场,由粘性作用使流体随边界流动,称Couette 库爱特流动。
压力流:指物料在管中流动,是由于管道两端存在压力差,而边界固定不动,称Poiseuille泊肃叶流动。
出口压力降:指粘弹性流体在毛细管入口区的弹性形变在经过毛细管后尚未全部松弛,至出口处仍残存部分内压力,则将表现为出口压力降。
临界切应力&临界切变速率:一般随剪切速率增大,至一临界值就产生破裂,而且越来越严重,这个开始产生破裂的速率或应力。
残余应力或内应力大:若物料冷却速率高,冷却时间短而松弛时间较长,则冷却后有较多应力被冻结在制品内,称残余应力或内应力大。
用于表征高聚物熔体弹性的物理量有:可回复剪切形变、挤出物胀大、法向应力效应,熔体破裂等。
弹性模量的影响因素:链结构(分子量、分子量分布、支化);加工条件(温度、剪切速率);配方(填料)拉伸流动:从流变学意义上讲,指物料运动的速度方向在速度梯度方向平行。
拉伸粘度:在稳态单轴拉伸中,即拉伸速率为恒定值,设x1为拉伸方向,体系的稳态拉伸粘度定义为:粘流活化能:E定义为分子链流动时用于克服分子间作用力以便更换位置所需要的能量,或者每摩尔运动单元所需要的能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。
螺杆特性曲线口模特性曲线挤出机稳定工作点对同一螺杆改变不同的转速,将方程绘在-坐标图上得到的一系列具有负斜率的平行直线称为螺杆特性曲线改变口模大小,将绘在坐标图上得到的一系列经过原点,斜率不同的直线称为口模特性曲线。
两组直线的交点就是适于该机头口模和螺杆转速下挤出机的综合工作点,该点所对应的qv为挤出机在操作条件下的生产率。
螺杆转速:直线越上越大;口模尺寸:斜率大的大开炼加工过程压力、速度分布压力度分布:极大值:在x’=-λ,即在辊距之前极小值:在x’=λ,p=0,即物料脱离辊筒表面的位置.在x’=-x’0,物料刚进入辊筒处,物料尚未承受压力.在最小辊距处,即x’=0处,即此时物料内压力为极大值的一半.速度分布两个特殊点:x’=±λ,vx=v,即压力极大值处和物料脱辊处,物料流速等于辊筒表面线速度,且速度沿y方向均等分布,保证压出料片速度均匀平稳压出.在-λ<x’<λ,前方压力小,后部压力大,压差作用向前,形成正压力流,各层速度大于辊筒表面线速度.在x’<-λ,前方压力大,后部压力小,形成反压力流,各层流速小于辊筒表面线速度.在x’*处,物料流速分布中,中心处的速度=0,称驻点.在x’<x’*,正负流速共存,形成旋转运动λ的意义:量纲为一的体积流量,与流量\辊距\辊速相关。
随λ的升高,压力分布曲线变宽变高,吃料与出料处间的流道加长。
冻结分子取向产生机理:进入模腔的物料一般处于高温低剪切状态,但当物料接触到冷模壁后,物料冷凝,致使粘度升高,并在模壁上产生一层不流动的冷冻皮层。
该皮层有绝热作用,使贴近皮层的物料不立即凝固,在剪切应力作用下继续向前流动。
若高分子链一端被冻结在皮层内,而另一端仍向前流动,必然造成分子链沿流动方向取向,且保压时间越长,分子链取向程度越高。
在后来的冷却阶段,这种取向被冻结下来。
可见,分子取向冻结大多不发生在制品中心处,而发生在表皮层以下的那层材料中。
消除(减轻)熔体破裂现象的措施:(1)适当降低分子量,加宽分子量分布;(2)适当升高挤出温度,但应防止交联、降解。
某些情况下如顺丁橡胶可利用低温光滑区挤出;(3)适当降低挤出速度,某些情况下,可利用高速的第二光滑区;(4)用喇叭型的口型,可提高rcrit,可消除死角;(5)加入填充补强剂和增塑剂。
影响熔体挤出破裂行为因素:一是口模的形状和尺寸;二是挤出成型过程的工艺条件;三是挤出物料的性质。
流动曲线:在剪切流动中,表征剪切应力与剪切速率之间的关系的曲线。
流体的流动主要是压力和粘弹力。
流动形式可区分为:压力流和拖曳流.流动和变形之间的关系:流动-液体-粘性-耗散能量-产生永久形变-无记忆效应-牛顿定律-时间过程变形-固体-弹性-贮存能量-形变可以恢复-有记忆效应-虎克定律-瞬时效应体破裂现象的机理分析对于LDPE型熔体,其应力主要集中在口模入口区,且入口区的流线呈典型的喇叭形收缩,在口模死角处存在涡流或环流。
当r较低时,流动是稳定的,死角处的涡流也是稳定的,对挤出物不产生影响,但是,当r>rcrit,入口区出现强烈的拉伸流,造成的拉伸形变超过熔体所能承受的弹性形变极限,强烈的应力集中效应使流道内的流线断裂,使死角区的环流乘机进入主流道而混入口模。
主流线断裂后,应力局部下降,又会恢复稳定流动,然后再一次集中弹性形变能,再一次流线断裂。
这样交替轮换,主流道和环流区的流体轮番进入口模。
两种形变历史和携带能量完全不同的流体,挤出时的弹性松弛行为也完全不同,引起口模出口处挤出物的无规畸变。
对于HDPE型熔体,流动时的应力集中效应主要不在口模入口区,而是发生在口模内壁附近,口模入口区不存在死角循环。
低r时,熔体流过口模壁,在壁上无滑移,挤出过程正常。
当r增高到一定程度,由于模壁附近的应力集中效应突出,此处的流线会发生断裂,又因为应力集中,使熔体贮能大大增加,当能量累积超过熔体与模壁之间的摩擦力的P能承受的极限时,将造成熔体沿模壁滑移,熔体突然增速,同时释放出能量,释能后的熔体再次与模壁粘着,从而再集中能量,再发生滑移,这种过程周而复始,造成聚合物熔体在模壁附近时滑时粘,表现在挤出物上呈现出竹节状或套锥形的有规畸变。
剪切粘度影响因素:1、链结构:前面已经介绍过聚合物的流动是分段进行的,是通过链段相继移动,导致分子链重心沿外力方向移动,从而实现流动,因此分子间作用力小,分子链柔顺性大,分子链中链段数越多而且越短,链段活动能力越大,钻孔洞容易,通过链段活动产生的大分子相对位移的效果也越大,流动性越好。
2、加工条件:粘度对切变速率依赖性与生产实践的关系前面已介绍的切力变稀对高分子材料的加工具有重要意义。
在炼胶,压延,挤出时,胶料流动速度快,切变速率,切应力较大,γ高,粘度低,流动性好,生产快,而当流动停止时,粘度变得很大,有良好的挺性,半成品停放时不易变形,不会发粘,有利于提高质量。
粘度降低,使熔体易于加工,在填充模具时易流过窄小的流道,而且使得注射机,挤出机运转时所需能量减小。
3、配方:填充补强材料和软化增塑材料A碳黑的影响碳黑用量\粒径\结构性的影响原因:碳黑粒子为活性填料,表面可吸附几条大分子链,形成类缠结点,阻碍大分子链运动和滑移,体系粘度上升,碳黑用量越多,缠结点越多,流动阻力增大.在用量相等的情况下,粒径小的,表面积大,橡胶与碳黑相互作用增强,粘度增大.B 碳酸钙影响属于无机填料,降低成本右图对PP影响,随碳酸钙用量增加粘度增大.原因:刚性粒子,不容易变形,阻力增大,又会增大分子链与碳酸钙颗粒间的摩擦作用.C 增塑剂影响主要用于粘度大\熔点高\难加工的高填充体系,降低粘度\改善流动性.在低剪切速率下,分子量分布宽粘度反而大的原因:当剪切速率较小时,分布宽者,一些特长的分子相对较多,可形成缠结结构比较多,故粘度比较大,当剪切速率增大时,分子量分布宽的试样中,由于缠结结构较高,且易被较高的剪切速率破坏,开始出现“切力变稀”的γc值较低,而且越长的分子随剪切速率增加对粘度下降的贡献越大。