当前位置:文档之家› 机械能守恒典型例题带详解

机械能守恒典型例题带详解

第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。

解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。

(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。

在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。

由以上两式解得104204220⨯==g v h m=10m 。

点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。

本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。

例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。

解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==。

根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。

解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。

重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。

根据机械能守恒定律有 △E k =-△E p , 即224121gL Lv ρρ=, 解得铁链刚脱离滑轮时的速度 2gLv =。

点拨 对于绳索、链条之类的物体,由于发生形变,其重心位置相对物体来说并不是固定不变的,能否确定重心的位置,常是解决该类问题的关键。

可以采用分段法求出每段的重力势能,然后求和即为整体的重力势能;也可采用等效法求出重力势能的改变量。

再有,利用△E k =-△E p 列方程时,不需要选取参考平面,且便于分析计算。

例3 如图5—51所示,跨过同一高度处的光滑轻小定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h=0.2m ,开始时让连接A 的细线与水平杆的夹角θ=53°。

由静止释放A ,在以后的运动过程中,A 所能获得的最大速度为多少?(sin53°=0.8,cos53°=0.6,g 取10m/s 2,且B 不会与水平杆相碰。

)解析 物体A 被拉至左侧定滑轮的正下方时获得最大速度,此时物体B 的瞬时速度为0。

以物体A 所在水平面为参考平面,在从物体A 刚被释放到物体A 运动至左侧定滑轮正下方的过程中,对系统应用机械能守恒定律,有)sin (212h h mg mv -=θ, 解得A 所能获得的最大速度为)2.053sin 2.0(102)sin (20-⨯⨯=-=h h g v θm/s=1m/s 。

点拨 求解本题的关键是正确选取研究对象,而且要能判断出获得最大速度时所处的位置。

分析时还可从系统何时具有最小重力势能着手,即只有当物体A 被拉至左侧定滑轮的正下方时,物体B 的位置最低,此时系统有最小重力势能,也就有最大动能,又此时物体B 的瞬时速度为0,故物体A 具有最大动能,则具有最大速度。

例4如图所示,在一根长为L 的轻杆上的B 点和末端C 各固定一个质量为m 的小球,杆可以在竖直面上绕定点A 转动,现将杆拉到水平位置后从静止释放,求末端C 摆到最低点时的速度大小?AB 三分之二杆长,杆的质量与摩擦不计。

解析:由于两小球、轻杆和地球组成的系统在运动过程中,势能和动能相互转化,且只有系统内两小球的重力做功,故系统机械能守恒.选杆在水平位置时为零势能点.则有 E 1=0.而 E 1=E 2,点拨:运用机械能守恒定律,应注意研究对象(系统)的选取和定律守恒的的条件.在本例题中出现的问题是,整个系统机械能守恒,但是,系统的某一部分(或研究对象)的机械能并不守恒.因而出现了错误的结果.例5物体自光滑球面顶点从静止开始下滑.求小物体开始脱离球面时α=?如图所示.解析:从运动学方面,物体先做圆周运动,脱离球面后做抛体运动.在动力学方面,物体在球面上时受重力mg 和支承力N ,根据牛顿第二定律物体下滑过程中其速度v 和α均随之增加,故N 逐步减小直到开始脱离球面时N 减到零.两个物体即将离开而尚未完全离开的条件是N=0.视小物体与地球组成一系统.过程自小物体离开顶点至即将脱离球面为止.球面弹性支承力N 为外力,与物体运动方向垂直不做功;内力仅有重力并做功,故系统机械能守恒.由机械能守恒解得结果:点拨:解题前将过程分析清楚很重要,如本题指出,物体沿球面运动时,N 减小变为零而脱离球面.若过程分析不清将会导致错误.例6 如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与水平地面垂直,顶上有一个定滑轮,跨过定滑轮的细线两端分别与物块A 和B 连接,A 的质量为4m ,B 的质量为m 。

开始时,将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升,所有摩擦均忽略不计。

当A沿斜面下滑距离s 后,细线突然断了。

求物块B 上升的最大高度H 。

(设B 不会与定滑轮相碰)解析 设细线断裂前一瞬间A 和B 速度的大小为v ,A 沿斜面下滑s 的过程中,A 的高度降低了s sin θ,B 的高度升高了s 。

对A 和B 以及地球组成的系统,机械能守恒,有物块A 机械能的减少量等于物块B 机械能的增加量,即2221421sin 4mv mgs mv mgs +=⋅-θ。

细线断后,物块B 做竖直上抛运动,物块B 与地球组成的系统机械能守恒,设物块B 继续上升的高度为h ,有221mv mgh =。

由以上两式联立解得 5s h =, 故物块B 上升的最大高度为 s s s h s H 565=+=+=。

点拨 在细线断裂之前,A 和B 以及地球组成的系统机械能守恒。

两个物体用同一根细线跨过定滑轮相连由于细线不可伸长,两个物体速度的大小总是相等的。

细线断裂后,B 做竖直上抛运动,由于只有重力做功,B 与地球组成的系统机械能守恒。

在处理实际问题时,要根据问题的特点和求解的需要,选取不同的研究对象和运动过程进行分析。

例7 如图所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细线相连,置于高为h 的光滑水平桌面上,l >h ,球刚跨过桌边。

若A 球、B 球相继着地后均不再反跳,忽略球的大小,则C 球离开桌边时的速度有多大?解析 设A 球着地时的速度为v 1,A 、B 、C 三球与地球组成的系统机械能守恒,有21321v m mgh ⋅⋅=, gh v 321=。

设B 球着地时的速度为v 2,A 球着地后,B 、C 两球与地球组成的系统机械能守恒,有2122221221v m v m mgh ⋅⋅-⋅⋅=,gh gh gh v gh v 3532212=+=+=。

所以,C 球离开桌边时的速度为gh v v C 352==。

点拨 在应用机械能守恒定律分析多个物体的运动时,研究对象的选取至关重要。

另外,上述求解过程采用了“系统减小的重力势能等于增加的动能”来列式,当然也可采用“系统末态的机械能等于初态的机械能”来列式。

请同学们试着做一下,并将这两种解法作一比较。

例8 电动机通过一条绳子吊起质量为8kg 的物体。

绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2)解析 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。

在匀加速运动过程中,加速度为θ B AlABChl8108120⨯-=-=m mg F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 52102221⨯==a v h t m=10m 。

在功率恒定的过程中,最后匀速运动的速度为1082001⨯==mg P v m m m/s=15m/s , 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h mg t s=5.75s 。

所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为t=t 1+t 2=2s+5.75s=7.75s 。

点拨 分析用最快的方式将物体吊起的具体过程,是求解本题的基础。

本题与汽车以恒定的加速度起动属于同一题型,请同学们作一对比。

学习物理,要善于比较联想、总结归纳,做到举一反三、触类旁通。

相关主题