当前位置:文档之家› 三氯氢硅氢还原制备高纯多晶硅

三氯氢硅氢还原制备高纯多晶硅

三氯氢硅氢还原制备高纯多晶硅1.高纯多晶硅生产工艺简介20世纪50年代,联邦德国西门子公司研究开发出大规模生产多晶硅的技术,即通常所说的西门子工艺。

多晶硅生产的西门子工艺,其原理就是在表面温度1100℃左右的高纯硅芯上用高纯氢还原高纯含硅反应物,使反应生成的硅沉积在硅芯上。

改良西门子方法是在传统西门子方法的基础上,具备先进的节能低耗工艺,可有效回收利用生产过程中大量的SiCl4 、HCl、H2等副产物以及大量副产热能的多晶硅生产工艺。

经过半个世纪的发展,多晶硅的制备从生产技术、规模、质量和成本都达到空前的水平,主要集中在美国、日本、德国三个国家。

这三国几乎垄断了世界多晶硅市场。

多晶硅生产的技术仍在进步发展,比如现在出现的硅棒对数达上百对的还原炉,可以使多晶硅的还原能耗降低到一个新的水平。

多晶硅的规格形态:表面无氧化杂质,呈银灰色带有金属光泽Si含量 99.9999%(太阳能级) 99.9999999(电子级)B含量≤0.003PPb(W)P含量≤0.3PPb(W)C含量≤100PPb(W)体内金属含量≤0.5PPb(W)(Fe,Cu,Ni,Zn,Cr)2.三氯氢硅氢还原反应基本原理2.1 三氯氢硅氢还原反应原理SiHCl 3和H 2混合,加热到900℃以上,就能发生如下反应:)(HCl 3)( Si )( H )(SiHCl 110090023气固气气℃~+−−−−→←+ 同时,也会产生SiHCl 3的热分解以及SiCl 4的还原反应:2490032H 3SiCl Si 4SiHCl ++−−→←℃ 4HCl Si 2H SiCl 24+−→←+此外,还有可能有43SiCl 2HCl Si 2SiHCl ++−→←HCl SiCl SiHCl 23+−→←以及杂质的还原反应:6HC1 2P 3H PCl 23+−→←+这些反应,都是可逆反应,所以还原炉内的反应过程是相当复杂的。

在多晶硅的生产过程中,应采取适当的措施,抑制各种逆反应和副反应。

以上反应式中,6HC1 2B 3H 2BCl 23+−→←+2.2 SiHCl 3氢还原反应的影响因素2.2.1 反应温度SiHCl 3被氢气还原以及热分解的反应是吸热反应。

所以,从理论上来说,反应的温度愈高则愈有利于反应的进行。

例如,以一定的氢气配比,在1240℃时还原SiHCl 3,沉积硅的收率较1000℃ 时沉积硅的收率高大约20% 。

此外,反应 温度高,硅的结晶性就好,而且表面具有光亮的金属光泽;温度越低,结晶变得细小,表面呈暗灰色。

反应温度也不能过高,因为:1) 硅与其他半导体材料一样,从气相往固态载体上沉积时有一个最高温度值,反应温度超过这个值时,随着温度的升高沉积速率反而下降。

各种不同的硅卤化物有不同的最高温度值,反应温度不应超过这个值。

此外,还有一个平衡温度值,高于该温度才有硅沉积出来。

一般说来,在反应平衡温度和最高温度之间,沉积速率随温度增高而增大。

2) 温度过高,沉积硅的化学活性增强,受到设备材质沾污的可能性增加,造成多晶硅的质量下降。

3) 直接影响多晶硅品质的磷硼杂质,其化合物随温度增高,还原量也增大,从而进入多晶硅中,使多晶硅的质量下降。

4) 温度过高,还会发生硅的腐蚀反应:220012Cl SiH 2HCl Si −−−→←+>℃2001242SiCl SiCl Si −−−→←+>℃所以过高温度是不适宜的。

但是温度过低对反应也不利,例如在 900~1000 ℃时,S1HC13的还原反应就不是主要的,而主要是SiHCl3的热分解反应,将导致SiHC13的转化率降低。

在1080~1200℃范围内,SiHCl3的反应以氢还原反应为主,生产中常采用的反应温度为1080~1100℃左右。

需要注意的是硅的熔点为1410到1420℃,与反应温度比较接近,因此生产中应严格控制反应温度的波动,以免温度过高使硅棒熔化倒塌,造成较大损失。

图1 反应温度对还原反应的影响2.2.2 反应配比还原反应时,氢气与 SiHC13的摩尔数之比 (也叫配比〕对多晶硅的沉积有很大影响。

只有在较强的还原气氛下,才能使还原反应比较充分地进行,获得较高的SiHC13转化率。

如果按反应式计算所需的理论氢气量来还原SiHC13 ,那么不会得到结晶型的多晶硅,只会得到一些非晶态的褐色粉末,而且收率极低。

增加氢气的配比,可以显著提高SiHC13的转化率。

图4-2表示SiHC13在不同氢气配比情况下的理论平衡转化率。

图2 SiHC13在不同氢气配比情况下的理论平衡转化率通常,实际的转化率远远低于理论值。

一方面是因为还原过程中存在各种副反应,另一方面是实际的还原反应不可能达到平衡的程度。

但是,总的情况仍然是还原转化率随着氢气与SiHC13的摩尔比的增大而提高,氢气与SiHC13的配比不能过大,因为:1) 氢气量太大,稀释了SiHC13的浓度,减少SiHC13分子与硅棒表面碰撞的机会,降低硅的沉积速度,也就降低了单位时间内多晶硅的产量。

同时,大量的氢气得不到充分的利用,增加了消耗。

2) 从BC13, PCI3的氢还原反应可以看出,过高的氢气浓度不利于抑制B、 P的析出,从而影响产品质量。

由此可知,配比增大,则SiHC13的转化率也增大,但是多晶硅的沉积速率会降低。

对于低配比所带来的SiHC13一次转化率降低的影响,可以通过尾气回收未反应的SiHC13,返回多晶硅还原生产中去使用,从而保证SiHC13得到充分利用。

2.3 反应气体流量在选择了合适的气体配比及还原温度条件下,进入还原炉的气体量越大,则沉积的速度越快,炉内多晶硅产量也越高。

在同样的设备内,采用大流量的气体进入还原炉,是一种提高生产能力的有效办法。

这是因为,流量越大,在相同时间内同硅棒表面碰撞的SiHC13分子数量就越多,硅棒表面生成的硅晶体也就越多。

同时,气体流量大,通过气体喷入口的气流速度也大,能更好地造成还原炉内气流的湍动,消减发热体表面的气体边界层和炉内气体分布不均匀的现象,有利于还原反应的进行。

图3表明,SiHC13通入还原炉的量增大时,沉积多晶硅的速度加快,生成的硅量也增加。

图3 多晶硅生长速度与SiHCl3流量的关系但是,SiHC13的流量增大,会造成SiHC13在炉内的停留时间太短,使SiHC13转化率相对降低。

如果具备有效的尾气回收技术,则可以回收未反应的SiHC13再重新投入反应,从而可以采用大流量的生产工艺,以提高多晶硅沉积速率及产量。

2.4 发热体表面积随着还原过程的进行,生成的硅不断沉积在发热体上,发热体的表面积也越来越大,反应气体分子对沉积面(发热体表表面) 的碰撞机会和数量也增大,有利于硅的沉积。

当单位面积的沉积速率不变时,表面愈大则沉积的多晶硅量也愈多。

因此多晶硅生产的还原反应时间越长,发热体直径越大,多晶硅的生产效率也越高。

2.5 沉积硅的载体沉积硅的载体,既是多晶硅沉积的地方,又要作为发热体为反应提供所需的温度。

作为沉积硅的载体材料,一般要求材料的熔点高,纯度高,在硅中的扩散系数小,以避免在高温下对多晶硅产生沾污,又应有利于沉积硅与载体的分离。

为了使载体发热,采取的方法是给载体通入电流,就如同电阻丝一样,通过控制电流的大小来控制其温度。

硅芯本身是高纯半导体,具有电阻率随着温度升高而降低的特性,常温下几乎不导电,需要很高电压才能将其“击穿”导电(所谓“击穿”,是指硅芯在几千伏高电压下,会有微小电流流过硅芯,使其发热逐渐转变为导体的过程);当硅芯温度升高电阻率下降,已经可以很好地导电了。

预热启动:根据硅芯电阻率随温度升高而降低的规律,对硅芯进行预热升温,其温度到达一定程度后,电阻率大幅度下降,此时加上较低的电压便可给硅芯通入电流。

常用的预热方法有等离子体预热和石墨棒预热等。

3. 三氯氢硅工艺还原工序的主要组成系统:电极冷却水系统、炉体冷却水系统、还原炉供电系统、炉体清洗系统、还原主物料系统、氢化主物料系统3.1 .1 三氯氢硅氢还原的物料工艺流程SiHCl3氢还原工艺流程见图:CDI 回收SiHCl3氢还原工艺流程方框图从精馏塔提纯出来的SiHCl3料,按照还原工艺条件的要求,经管道连续加入到TCS进料罐。

在进料罐中通过氢气加压的方式将TCS输送到气体控制台中。

经尾气回收系统回收的氢气与来自制氢系统的补充氢气在管路中汇合后也先进入氢气缓冲罐中,然后再输送到气体控制台。

氢气和TCS在气体控制台中通过控制压力、流量后进入静态混合器,由此形成一定配比的H2和SiHCl3的气液混合物在完成混合过程以后,混合物料经过螺旋管换热器(李比希管)得热量以后进入还原炉。

气体沿着管路进入到还原炉中,在表面温度达1100℃的硅芯热载体上反应,并在载体上沉积出多晶硅来,同时生成HCl、SiH2Cl2、SiCl4气体等,与未反应完的H2和SiHCl3气体一起被排出还原炉,沿管路进入尾气回收系统。

在尾气回收系统中,被冷凝、分离、冷凝下来的氯硅烷被送到分离提纯系统进行分离与提纯,然后再返回多晶硅生产中。

分离出来的氢气返回氢还原工艺流程中的蒸发器中,循环使用。

分离出来的氯化氢气体返回 SiHCl3合成系统中。

3.2 三氯氢硅氢还原中物料系统的主要设备3.2.1 TCS进料缓冲罐和氢气缓冲罐作用:用于稳定系统中物料的压力和流量。

3.2.2 气体控制台作用:用于调节控制进入还原炉的压力和气体流量3.2.3 螺旋管换热器(李比希管)作用:与还原尾气换热,得到热量使液态的TCS汽化,减小还原炉的能耗。

3.2.4 还原炉还原的基本结构如图8。

图8 还原炉结构示意图现在的还原炉一般采用钟罩式结构,由炉筒(钟罩)、底盘、电极、窥视孔、进出气管等组成,一般采用不锈钢制成,以减少设备材质对产品的沾污。

还原炉的内壁平滑光亮,炉筒和底盘均有夹层,可以通热水带走辐射到炉壁上的热量,以保护炉体和密封垫圈。

炉顶设安全防爆孔及硅芯预热装置。

炉体上还设有窥视孔,通过它可以观察了解炉内的各种情况。

底盘是夹套式的,在底盘上布置有一定数量的电极,炉内的载体(硅芯)就坐放在电极上,还原炉的电源通过电极向载体供电,使载体发热,提供炉内反应所需的温度。

电极一般用铜制成。

电极中间是空心的,可以通冷却水进行冷却,以防止电极的密封垫圈损坏,电极与载体用石墨夹头进行连接。

3.2.5还原尾气换热器列管式换热器,作用将还原尾气温度降低至100℃,后输送到还原尾气干法回收工序(CDI)。

3.3.2工艺过程简述开炉前的一切准备工作和安装工作完成后,则封闭还原炉,并确认冷却水已通入炉筒、底盘、电极以及一切需要通冷却水的地方。

然后往炉内通入纯氮气以置换出炉内的空气,完成后再通入纯氢气以置换出氮气。

之后便可进行高压启动或硅芯预热启动。

相关主题