当前位置:文档之家› 热分析仪实验报告

热分析仪实验报告

差热分析实验报告
一、实验目的
1、掌握差热分析的基本原理及测量方法
2、学会差热分析仪的操作,并绘制玻璃样品的差热图。

3、掌握差热曲线的处理方法,对实验结果进行分析。

二、实验原理
物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。

差热分析(Differentiai Thermal Analysis,简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。

差热分析仪的结构如下图所示。

它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。

差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图1)。

两支笔记录的时间—温度(温差)图就称为差热图(见图2),或称为热谱图。

图1 差热分析原理图
图2 典型的差热图
从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。

峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件
下,峰面积大的表示热效应也大。

在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。

因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。

理论上讲,可通过峰面积的测量对物质进行定量分析。

三、仪器与试剂
试剂:玻璃粉末,参比物:α-Al2O3,仪器:差热分析仪(HCT-1/2)一台,计算机一台。

四、实验步骤
1、开启仪器电源,预热20分钟
2、装入实验样品
升起加热炉,露出支撑杆(热电偶组件)。

将参比物样品与实验样品分别装入陶瓷坩埚中(Al2O3),平稳放置在热电偶板上,双手降下加热炉体。

3、检查冷却循环水
4、检查仪器主机与计算机数据传输线连接情况
5、检查仪器注意气氛控制单元与外接气源连接情况
注意:在使用流动气氛进行实验时应先做一次或二次流动气氛的热重基线漂移实验,通过改变各路进气流量的方法,使热重基线稳定,漂移最小,为正式试验提供最佳的试验条件。

同时,还应注意输入气体管路的欲通气体纯净,在正式试验前,让欲通气体流通约25分钟。

6、运行工作站软件,进入新采集设置界面进行参数设定,输入初始温度(25℃)、终止温度(1000℃)、升温速率(10℃/min)等参数。

7、点“采集”按钮后,系统自动执行实验数据采集命令。

8、到达终止温度后,仪器自动停止采集,将数据存盘。

7、利用Origin画出DTA图,并标出热效应的起始和终止温度以及峰顶温度。

五、数据记录和处理
2004006008001000
-15
-10
-505
10
15
668.6℃
592.1℃
629.7℃
Temperature(℃)
E n d o t h e m i c E x o t h e m i c ΔT 图3 玻璃粉末DTA 曲线
上图(见图3)为实验所得DTA 曲线,由图可知放热峰的起始温度T 1=592.1℃,终止温度T 3=668.6℃,而峰顶温度T 2=629.7℃,这说明该玻璃粉末析晶温度范围为592.1~629.7℃,并且在629.7℃附近其析晶最为明显。

六、误差分析
(1)参比物和试样的热性质、质量、密度等并不完全相同导致基线发生漂移,对实验结果产生影响。

参比物的导热系数受比热容、密度、温度和装填方式等多种因素的影响,这些因素的变化均能引起差热曲线基线的偏移。

因此,即使装填时对样品进行小心振动使样品尽量装填紧密,还是不能避免误差的产生。

(2)试样的用量偏大会导致相邻的两个峰发生重叠,在进行近似处理时不可避免的会带来系统误差,因此实验时可减少试样用量,是差热曲线更准确更便于分析处理。

(3)升温速率的影响。

升温过快会导致峰变尖锐,图像各点的离散程度变大,不利于数据的处理,且升温过快会使实验受环境温度的影响变大,容易导致加热器内温度的不均匀。

七、思考题
1、差热峰的方向与样品吸放热的关系?
差热峰的方向和两个因素有关,首先,差热分析中是以参比物还是试样为基准来算差值
(即TS-TR=ΔT还是TR -TS =ΔT);其次,发生的反应本身是吸热还是放热的。

在本次实验中以试样为基准,由于是吸热反应,因此差热峰向下。

2、克服基线漂移,可以采取哪些措施?
首先,只有当参比物和试样的热性质、质量、密度等完全相同时才能在试样无任何类型能量变化的相应温区内保持=O,使基线不发生漂移。

参比物的导热系数受比热容、密度、温度和装填方式等多种因素的影响,这些因素的变化均能引起差热曲线基线的偏移。

即使同一试样用不同参比物实验,引起的基线偏移也不一样。

本实验中将样品小心振动使其尽量均匀,使基线漂移减小,另外,降低升温速率、减少试样用量都可减小基线的漂移
3、差热曲线的形状与那些因素有关?影响差热分析结果的主要因素是什么?
影响仪器仪表差热分析的主要因素如下:
(1)气氛和压力的选择
气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。

因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。

(2)升温速率的影响和选择
升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。

但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。

更主要的可能导致相邻两个峰重叠,分辨力下降。

较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。

但测定时间长,需要仪器的灵敏度高。

一般情况下选择10℃/min~15℃/min为宜。

(3)试样的预处理及用量
试样用量大,易使相邻两峰重叠,降低了分辨力。

一般尽可能减少用量,最多大至毫克。

样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。

对易分解产生气体的样品,颗粒应大一些。

参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。

(4)参比物的选择
要获得平稳的基线,参比物的选择很重要。

要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。

常用三氧化二铝(α-Al2O3)或煅烧过的氧化镁或石英砂作参比物。

如分析试样为金属,也可以用金属镍粉作参比物。

如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。

选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、Al2O3等。

除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插
在试样和参比物中的位置等都是应该考虑的因素。

相关主题