人造卫星变轨问题专题
一、人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。
轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM
r T 32π=、向心加速度2r GM a =也都是确定的。
如果卫星的质量也确定,那么与轨道半径r 对应的卫星的动能E k (由线速度大小决定)、重力势能E p (由卫星高度决定)和总机械能E 机(由能量转换情况决定)也是确定的。
一旦卫星发生变轨,即轨道半径r 发生变化,上述物理量都将随之变化。
同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。
在高中物理中,会涉及到人造卫星的两种变轨问题。
二、渐变
由于某个因素的影响使卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。
解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径是增大还是减小,然后再判断卫星的其他相关物理量如何变化。
如:人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。
如果不及时进行轨道维持(即通过启动星上小型火箭,将化学能转化为机械能,保持卫星应具有的速度),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。
由于这种变轨的起因是阻力,阻力对卫星做负功,使卫星速度减小,所需要的向心力r m v 2
减小了,而万有引力大小2
r GMm 没有变,因此卫星将做向心运动,即半径r 将减小。
由㈠中结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,该过程有部分机械能转化为内能(摩擦生热),因此卫星机械能E 机将减小。
为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。
而且万有引力做的正功远大于克服大气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。
根据E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。
再如:有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。
如果这个结论正确,那么恒星、行星将发生离心现象,即恒星到星系中心的距离、行星到恒星间的距离都将逐渐增大,宇宙将膨胀。
三、突变
由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其到达预定的目标。
如:发射同步卫星时,通常先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1,第一次在P 点点火加速,在短时间
内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行
到远地点Q 时的速率为v 3,此时进行第二次点火加速,在短时间内将
速率由v 3增加到v 4,使卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。
v 2 v 3 v 4 v 1 Q P Ⅰ
Ⅲ Ⅱ。