当前位置:文档之家› 二阶非线性光学材料课件

二阶非线性光学材料课件

它要经受250℃的短时高温和具有100%左右的承 受加工和操作的长时间热稳定性 。

• 一般说来,二阶非线性光学材料的设计原则为: • 1)设计和选择基态偶极矩小,激发态偶极矩大的
分子,吸、供电基不要选择电负性相差悬殊的基 团; • 2)降低分子的中心对称性,引入手性原子; • 3)分子内引入氢键的基团使分子在氢键的作用下 定向、非中心对称排列; • 4)分子成盐,盐中分子间库仑力的作用要大于偶 极作用,阳离子分隔屏蔽了有极性的发色团之间 的作用。成盐提高二阶非线性光学系数,尤其适 用于极性大的分子; • 5)形成包结络合物。

• 二阶非线性光学高分子材料大致可分为三 类:
• (1)高分子与生色基小分子的主客复合物, • (2) 生色基功能化的高分子; • (3)LB膜的高分子化。

• 1.高分子—生色团低分子的宾主复合物

• 宾主型非线性光学材料大致可分为三种类 型:
• (1)透明的非晶高分子与二阶非线性光学有 机低分子的复合物.
• ④折射率光栅的形成过程。在此空间电荷场的作用 下,通过电光或双折射效应,在物质内形成折射率 在空间的调制变化。根据静电泊松方程就可以形成 一个正弦变化的折射率光栅,该光栅与初始光波相 比有θ 度的相移角。

• 光折变效应有两个显著特点:弱激光响应 和非局域响应。前者指其效应与激光强度 无明显相关性,用弱激光如毫瓦量级功率 的激光来照射光折变材料,只需足够长的 时间,也会产生明显的光致折射率变化。 一束弱光可以使电荷—个个地移动.从而逐 步建立起强电场。后者指通过光折变效应 建立折射率相位栅不仅在时间响应上显示 出惯性,而且在空间分布上其响应也是非 局域的,折射率改变的最大处并不对应光 辐照最强处。

• LB膜有以下几种类型: • (1)单分子膜, • (2)交互累积膜(异式Y型); • (3)X型(或Z型)累积膜; • (4)面内取向累积膜。


光折变聚合物
• 当一种材料同时具有光电导和线性电光特 性时,就会显示光折变效应,即其折射率 即使在很弱的激光照射下也会产生很大的 空间调制。

• (2)第二种情况是液晶高分子为主体,掺杂 生色小分子
• (3)第三种情况是掺杂的SHG低分子与聚合物 相互作用,生成非中心对称的晶体。

• 2.生色基功能化的高分子 • 为了提高高分子—有机生色基分子的复合
物的稳定性,一个重要的方法是将生色基 分子与高分子主链结合在一起。




• 3.LB膜的应具备下述条件: • 1)非中心对称的晶体结构: • 2)为弥补有机晶体的转换效率不高的弱点,χ(2)达
到10-8~10-9 esu始可考虑应用; • 3)在所要求波长范围内吸收要小; • 4)满足位相匹配条件:ω3n(ω3)=ω1n(ω1)+ω2n(ω2); • 5)足够大的晶体尺寸和优异的光学质量。 • 另外,将非线性光学材料做成器件,一般来说,

• 二、聚合物光折变材料的种类 • 显示光折变效应的材料必须包括下列组分:
在光激发后能产生光生载流子的光敏组分; 光生载流子的输运介质;载流子的俘获中 心和具有电光特性的二阶非线性光学生色 团。




• 有机聚合物光折变材料有着明显的优势: ①聚合物材料所具有的大电光系数、高光 学损伤阈值、低直流介电常数使其在理论 上具有比无机晶体大几倍的品质因数;

• 由于这种材料的非线性源于生色团的偶极 在电场作用下的极化取向,因此被称之为 “极化聚合物”

• 聚合物的极化方法有许多。常用的方法有 • 平板电场极化, • 电晕放电极化、 • 全光极化 • 光诱导极化。


• 极化聚合物的研究始终围绕3个方面的问题 来进行,即对材料非线性的来源与其物理 过程的了解、材料的潜在应用和开发新的 高性能体系。

• 典型的二阶非线性光学生色团分子有


• 常用的电子给予体是:氨基、氧、硫。而 常用的电子接受体是:硝基、腈基、羰基、 砜、氨磺酰。在相同受、给体的情况下, 受、给体强度顺序:

• 对于具有共轭结构的分子,给体--受体强度 越大,越有利于体系形成电荷转移的共振 态,扩大π电子的流动范围,使分子在外场 中更易发生分子内电荷转移而有利于增强 分子的微观倍频效应。
• 共轭长度,共轭骨架及其共面性等因素对 分子的非线性极化率都有影响。



• 二维电荷转移分子 • 1、Λ形分子

• 2、x形二维电荷转移分子


• 3、Y形二维分子

• 4、八极分子

• 二阶非线性光学高分子材料 • 一种分子和材料能够显示二阶非线性光学
响应的基本结构条件是它们必须不存在对 称中心。众所周知,普通的聚合物是一种 无定形结构的材料,为使它们能满足此条 件,可以用驻极体制备的方法,在Tg以上施 加直流高电压,使偶极子沿电场方向取向, 然后在电场下冷却下来偶极子取向被冻结。 这就是所谓电场极化法。
• 一、基本概念

• ①载流子的产生过程。在相干光的照射下,物质的 亮区吸收了光能,导致电子和空穴的分离而产生电 荷载流子。
• ②载流子的输运过程。生成的载流子由于电荷密度 梯度引起的扩散或外场作用下的漂移而形成在材料 中的传输(聚合物材料中往往是后者)。
• ③内部空间电荷场的形成过程。通过载流子被材料 中的陷阱俘获及再释放、再俘获等一系列过程,亮 区中可被激发的电荷已耗尽且都转移到暗区中去了, 在物质中产生了一个与光强空间分布相对应的电荷 空间分布,从而形成相应的内部空间电荷场。
二阶非线性光学材料
• 具有较大微观倍频系数β的有机分子一般具有较大 的π共轭体系,体系两端分别有推电子基团和拉电 子基团( D-π- A型双受体结构),形成分子内的电荷 转移;晶体的宏观倍频系数χ(2) 是组成这一晶体的 所有分子微观倍频系数的矢量和,因此,有些有 机分子虽然β值很大,但在形成晶体时由于分子间 偶极一偶极的静电作用形成了有中心对称的晶体 空间群,分子在晶体中的排列使偶极相互抵消, 所有分子的微观倍频系数矢量和趋于零,最后显 示出的χ(2)为零。
相关主题