当前位置:文档之家› 液化石油气储罐设计说明书

液化石油气储罐设计说明书

1003m液化石油气储罐设计绪论m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。

对于储存量小于5003 m时.一般选用卧式圆筒形储罐。

液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503人民生命财产安全的重要设备。

因此属于设计、制造要求高、检验要求严的三类压力容器。

本次设m液化石油气储罐设计即为此种情况。

计的为1003液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的特点。

目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。

球形贮罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂,m或单罐容积大于2003m时选用球形贮焊接工作量大, 故安装费用较高。

一般贮存总量大于5003罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。

圆筒形贮罐按安装方所以在总贮量小于5003式可分为卧式和立式两种。

在一般中、小型液化石油气站大多选用卧式圆筒形贮罐, 只有某些特殊情况下(站地方受限制等) 才选用立式。

本文主要讨论卧式圆筒形液化石油气贮罐的设计。

卧式液化石油气贮罐设计的特点。

卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称容规) 的监督。

液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。

贮罐主要有筒体、封头、人孔、支座以及各种接管组成。

贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、压力表、温度计、液面计等。

第一章 设计参数的选择1、设计题目:853m 液化石油气储罐的设计2、设计数据:如下表1:表1:设计数据3、设计压力:设计压力取最大工作压力的1.1倍,即 1.10.790.869P MPa =⨯=4、设计温度:工作温度为50C 。

,设计温度取。

5、主要元件材料的选择:5.1 筒体材料的选择:根据GB150-1998表4-1,选用筒体材料为低合金钢16MnR (钢材标准为GB6654)[]170tMPa σ=。

16MnR 适用围:用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大(8mm ≥)的压力容器。

5.2 鞍座材料的选择:根据JB/T4731,鞍座选用材料为Q235-B ,其许用应力[]147sa MPa σ=5.3 地脚螺栓的材料选择:地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力[]147bt MPa σ=45550C +=。

第二章 设备的结构设计1、圆筒厚度的设计计算压力c P :液柱静压力: 41P =5609.81 3.2 1.7610gh Pa ρ=⨯⨯=⨯ 461/ 1.7610/0.869102%5%P P =⨯⨯=<,故液柱静压力可以忽略,即c P 0.869P MPa ==该容器需100%探伤,所以取其焊接系数为 1.0φ=。

圆筒的厚度在6~16mm 围,查GB150-1998中表4-1,可得:在设计温度70C 。

下,屈服极限强度345s MPa σ=, 许用应力[]t170MPa σ=利用中径公式, 计算厚度:[]i tcPD 0.869MPa 34008.72 1.01700.8692-P mm δφσ⨯===⨯⨯-查标准HG20580-1998《钢制化工容器设计基础规定》表7-1知,钢板厚度负偏差为0.25mm ,而有GB150-1998中3.5.5.1知,当钢材的厚度负偏差不大于0.25mm ,且不超过名义厚度的6%时,负偏差可以忽略不计,故取10C =。

查标准HG20580-1998《钢制化工容器设计基础规定》表7-5知,在无特殊腐蚀情况下,腐蚀裕量2C 不小于1mm 。

本例取2C =1则筒体的设计厚度128.7019.7n C C mm δδ=++=++= 圆整后,取名义厚度10n mm δ=筒体的有效厚度121019e n C C mm δδ=--=-=2、封头厚度的设计查标准JB/T4746-2002《钢制压力容器用封头》中表1,得公称直径i DN=D =3400mm 选用标准椭圆形封头,型号代号为EHA ,则 22iiD h =,根据GB150-1998中椭圆形封头计算中式7-1计算:[]c itcP D 0.869MPa 34008.72 1.001700.50.8692-0.5P mm δφσ⨯===⨯⨯-⨯同上,取21C mm =,10C =。

封头的设计厚度8.7019.7d mm mm mm δ=++=圆整后,取封头的名义厚度10n mm δ= ,有效厚度121019e n C C mm δδ=--=-= 封头型记做 EHA 320022-16MnR JB/T4746⨯3、筒体和封头的结构设计3.1 封头的结构尺寸(封头结构如下图1) 由()22i D H h =-,得34008904044i D h H mm =-=-=查标准JB/T4746-2002《钢制压力容器用封头》中表B.1 EHA 椭圆形封头表面积、容积,如下表2:表2 :EHA 椭圆形封头表面积、容积224i V D L V π=⨯+封 ,而充装系数为0.9则:2V D 20.94i L V π=⨯+封 即2100 3.42 5.50800.94L π=⨯⨯+⨯ 计算得L=11.025,取L=11m4、鞍座选型和结构设计4.1 鞍座选型该卧式容器采用双鞍式支座,材料选用Q235-B 。

估算鞍座的负荷: 储罐总质量12342m m m m m =+++1m ——筒体质量:331× 3.14 3.210107.85109218.726m DL kg πδρ==⨯⨯⨯⨯⨯=2m ——单个封头的质量:查标准JB/T4746-2002《钢制压力容器用封头》中表B.2 EHA 椭圆形封头质量,可知,21592.3m kg =3m ——充液质量:<ρρ液化石油气水,故23310001000 3.4102 5.5085110.836610k4m V V g πρ⎛⎫=•==⨯⨯⨯+⨯=⨯ ⎪⎝⎭水4m ——附件质量:人孔质量为302kg ,其他接管质量总和估为400kg ,即4702kg m =综上所述,312342123.9410kg m m m m m =+++=⨯G=mg=1215.87kN,每个鞍座承受的重量为607.94N由此查JB4712.1-2007容器支座,选取轻型,焊制为BI,包角为120。

,有垫板的鞍座。

查JB4712.1-2007表6得鞍座结构尺寸如下表3:表3:鞍式支座结构尺寸4.2 鞍座位置的确定因为当外伸长度A=0.207L时,双支座跨距中间截面的最大弯矩和支座截面处的弯矩绝对值相等,从而使上述两截面上保持等强度,考虑到支座截面处除弯矩以外的其他载荷,面且支座截面处应力较为复杂,故常取支座处圆筒的弯矩略小于跨距中间圆筒的弯矩,通常取尺寸A不超过0.2L值,为此中国现行标准JB 4731《钢制卧式容器》规定A≤0.2L=0.2(L+2h),A最大不超过0.25L.否则由于容器外伸端的作用将使支座截面处的应力过大。

由标准椭圆封头2,402()4i iD DmmH h==-有h=H-故0.2(2)0.2(11000240)2216A L h mm≤+=+⨯=鞍座的安装位置如图3所示:此外,由于封头的抗弯刚度大于圆筒的抗变钢度,故封头对于圆筒的抗弯钢度具有局部的加强作用。

若支座靠近封头,则可充分利用罐体封头对支座处圆筒截面的加强作用。

因此,JB 4731还规定当满足A ≤0.2L 时,最好使A ≤0.5R m (2R i nm R δ+=),即170017052nm R mm δ=+=0.50.51705852.5m A R mm ≤=⨯= ,取A=85m综上有:A=850mm(A 为封头切线至封头焊缝间距离,L 为筒体和两封头的总长)5、接管,法兰,垫片和螺栓的选择5.1、接管和法兰液化石油气储罐应设置排污口,气相平衡口,气相口,出液口,进液口,人孔,液位计口,温度计口,压力表口,安全阀口,排空口。

接管和法兰布置如图3所示,法兰简图如图所示:查HG/T 20592-2009《钢制管法兰》中表8.2 3-1 PN10带颈对焊钢制管法兰,选取各管口公称直径,查得各法兰的尺寸。

查HG/T 20592-2009《钢制管法兰》中附录D 中表D-3,得各法兰的质量。

查HG/T 20592-2009《钢制管法兰》中表3.2.2,法兰的密封面均采用MFM (凹凸面密封)。

表4:接管和法兰尺寸5.2 垫片查HG/T 20609-2009《钢制管法兰用金属包覆垫片》,得:表5 垫片尺寸表2:填充材料为有机非石棉纤维橡胶板。

3:垫片厚度均为3mm。

5.3 螺栓(螺柱)的选择查HG/T 20613-2009 《钢制管法兰用紧固件》中表5.0.7-9和附录中表A.0.1,得螺柱的长度和平垫圈尺寸:表6 螺栓及垫片6 人孔的选择根据HG/T 21518-2005《回转盖带颈对焊法兰人孔》,查表3-1,选用凹凸面的法兰,其明细尺寸见下表:表7 人孔尺寸表单位:mm第三章:容器强度的校核3.1水压试验应力校核:试验压力: 1.25 1.250.869 1.086T P P MPa ==⨯= 圆筒的薄膜应力T () 1.086(34009)205.962290.90.9 1.00345310.5,i e T e s T p D MPa MPa δσδφσσ+⨯+===⨯=⨯⨯=>合格。

3.2.筒体轴向弯矩计算工作时支座反力 1G 607.94k ,2h H-h 850i F N mm'==== 圆筒中间处截面上的弯矩()()222a i 1i 22212/4441312 1.7050.85/11.08607.9411.0840.85103840.85411.081311.08R h L F L A M h L L kN m ⎡⎤+-⎢⎥'=-⎢⎥⎢⎥+⎢⎦⎣⎡⎤+⨯-⎢⎥⨯⨯=-=•⎢⎥⨯⎢⎥+⨯⎣⎦鞍座处横截面弯矩:2222mi 2i0.85 1.7050.851111.0820.8511.0821607.940.85129.54440.8511311.083R h A L AL M FA kN m h L ⎡⎤⎡⎤---+-+⎢⎥⎢⎥⨯⨯=--=-⨯⨯-=-•⎢⎥⎢⎥⨯⎢⎥⎢⎥++⎢⎥⎢⎥⨯⎣⎦⎣⎦3.3.筒体轴向应力计算及校核(1)圆筒中间横截面上,由压力及轴向弯矩引起的轴向应力 最高点处:c a 1122a 0 1.607103800012.635220.012 3.14 1.7050.009e e p R M MPa R σδπδ⨯=-=-=-⨯⨯⨯ 最低点处:c m 1222a e 0.869 1.7051103800095.043220.009 3.14 1.7050.009e p R M MPa R σδπδ⨯=+=+=⨯⨯⨯ (2)由压力及轴向弯矩引起的轴向应力因鞍座平面上0.5m A R ≤,即筒体被封头加强,查JB/T 4731-2005表7-1可得K 1=1.0,K 2=1.0 鞍座横截面最高处点轴向应力:c m 2322e1m e 0.869 1.705295482.768220.0091 3.14 1.7050.09p R M MPa K R σδπδ⨯-=-=-=-⨯⨯⨯⨯ 鞍座横截面最低点处轴向应力:c m 2422m e0.362e p R M MPa K R σδπδ=+=- (3)筒体轴向应力校核因轴向许用临界应力由e a 0.0940.09490.0008051700A R δ⨯=== 根据圆筒材料查图4-8可得5222100.00080598.933B EA MPa =≈⨯⨯⨯=[][]()tmin ,tcr B σσ==98.9MPa ,[]0cr min(0.8,)eL R B σ==98.9MPa<32σσ,[]=tσ170MPa ,合格1σ,4σ[]<130MPa tcr σ=,合格1T σ,4T σ[]<130MPa cr σ=,合格3.4.筒体和封头中的切向剪应力计算与校核因m 2R A ≤,带来的加强作用,查JB/T4731-2005表7-2得K 3=0.88,K 4=0.401,其最大剪应力位于靠近鞍座边角处33m e 0.88607.941034.8617059K F MPa R τδ⨯⨯===⨯因圆筒 [τ]=0.8 []= 0.8170=136 MPa tσ⨯故有 < [] = 136 MPa ττ , 故切向剪应力校核合格 3.5.封头中附加拉伸应力'3h 4m F 607.9410 <K = 0.401 =15.89MPa R 1.7050.009e τδ⨯⨯⨯由压力引起的拉伸应力 (K=1.0)i h KPD 10.869 3.4 <= =164.3MPa 220.009e σδ⨯⨯⨯ []th h 1.25 1.25170139.04=73.46 MPa > σστ-=⨯- 合格3.6.筒体的周向应力计算与校核圆筒的有效宽度2335mm b = ,当容器焊在支座上时,取1.0=k ,查JB/4731-2005表7-3可得560.76,0.0132K K ==。

相关主题