石河子大学分离工程课程论文《超临界萃取技术的应用及发展》学院:化学化工学院专业:生物化工学号:姓名:指导教师:中国·新疆·石河子2012年7月超临界萃取技术的应用及发展(石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室,新疆石河子,832003)摘要: 超临界流体萃取(SFE)是一种新型的分离方法,具有广阔的发展前景。
本文简要介绍了超临界流体的基本性质,原理、萃取过程和技术特点,综述了超临界技术在萃取分离、环境保护、材料科学、反应工程、生物技术、清洗工业等方面的发展状况,并对超临界技术对多氯联苯的提取中的应用作了简要介绍。
关键词:超临界流体超临界萃取应用有机农药引言超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种提取天然物质成分的新技术。
其起源于20世纪40年代,70年代投入工业应用,以其环保、高效等显著特性迅速超越了传统技术,并取得成功。
过去,分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。
水蒸汽蒸馏法需要将原料加热,不适用于化学性质不稳定成分的提取;压榨法得率低;有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留;超临界流体萃取法则有效地克服了传统分离方法的不足,它利用在临界温度以上的高压气体作为溶剂,分离、萃取、精制有机成分。
近二十多年来,超临界技术在国内外迅猛发展,在食品、化工、香料、环保、纳米材料、生物医药等诸多领域均有广阔的应用前景,也取得了众多的重要成果。
德国在1978年建立了世界上第一套用于脱除咖啡豆中咖啡因的工业化SFE 装置[1],后各国也相继建立了SFE实用装置。
随后美国、日本等国也投人大量人力物力对超临界流体萃取技术进行研究,其研究范围涉及食品、香料、化工、医药等领域,并取得一系列进展[2-3]。
我国从事SFE技术的研究是近十几年的事,也取得了一些可喜的成绩[4]。
本文针对目前研究很热的超临界流体萃取技术进行一个简单的综述,并对其巨大的应用的前景提出展望。
1 超临界流体特性简介[5]超临界流体(Supercritical fluid,简写SCF)是处于临界温度和临界压力以上的非凝缩性的高密度流体。
物质的气液平衡线并不随温度和压力的增加而无限延伸,当系统处于高于临界压力和临界温度时,气相和液相的界面消失,这时称为超临界状态。
相图中高于临界压力和临界温度的区域称为超临界流体区。
气体、液体和超临界流体的性质对比示于表1[6]。
从表1数据可知,超临界流体具有密度大、黏度小、扩散系数居中的特点。
超临界流体既具有液体对溶质有较大溶解度的特点,又具有气体易于扩散和运动的特性,传质速率大大高于液相过程。
也就是说超临界流体兼具气体和液体的性质。
更重要的是在临界点附近,压力和温度微小的变化都可以引起流体密度很大的变化,并相应地表现为溶解度的变化。
超临界萃取和分离就是利用压力、温度的变化来实现的。
虽然超临界流体的溶剂效应普遍存在,但实际上还要考虑溶解度、选择性、临界点数据及化学反应等诸多因素,常采用的超临界流体并不太多。
表2列出了文献中介绍可作为超临界萃取的溶剂及其临界性质[7]。
表2中各化合物均可用于超临界萃取,但以CO2最受关注。
超临界CO2作为萃取剂有以下特点:①CO2密度大,溶解性能强,传质速率高;②临界压适中,临界温度31.6℃,分离过程可在接近室温条件下进行;③便宜易得,无毒,惰性以及极易从萃取产物中分离出来等。
当前绝大部分超临界流体萃取都以CO2为溶剂。
2 超临界萃取技术的原理及特点超临界萃取技术是近二三十年发展起来的一种新型分离技术,它综合了溶剂萃取和蒸馏两种功能的特点。
其过程是在超临界状态下使超临界流体与待分离的物质在萃取副罐中接触,通过改变体系的压力和温度使其选择性地萃取其中某一组分,经过一段时间以后,将萃取罐中的超临界流体通过减压阀进入分离罐,通过温度或压力的变化,降低超临界流体的密度,使所萃取的物质与超临界流体进行分离,而超临界流体又可循环使用。
利用超临界流体具有低粘性、高溶解系数、低毒性和低可燃性的特点选择适当的操作条件可以有选择性地把目标化合物萃取出来。
由于全过程不使用或少使用有机溶剂,避免了萃取过程中溶剂对人体的损害和对环境的污染。
与一般液体相比,SFE的萃取速率和范围更为扩大,具有以下特点:①通过调节温度和压力可提取纯度较高的有效成分或脱出有害成分;②选择适宜的溶剂如CO 可在较低温度或无氧环境下操作,分离、精制热敏性物质和易氧化物质;③SFE具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提取有效成分;④通过降低超临界流体的密度,容易使溶剂从产品中分离,无溶剂污染,且回收溶剂无相变过程,能耗低;⑤兼有萃取和蒸馏的双重功效,可用于有相物的分离、精制;⑥同类物质如有机同系物,按沸点升高顺序进入超临界相。
3 影响SFE的因素超临界流体萃取影响因素主要有:萃取条件,包括压力、温度、时间、溶剂及流量等;原料的性质和萃取剂的种类。
3.1 萃取压力的影响萃取过程中超临界流体(SCF)密度的变化直接影响萃取效果,萃取压力是影响超临界相密度的重要参数。
萃取温度一定时,压力增加,液体的密度增大。
临界压力附近,压力的微小变化会引起密度的急剧改变,而密度的增加将引起溶解度的提高,通过调节压力和温度可控制超临界流体的溶解能力,这是超临界萃取具有的独特优点[5]。
例如,CO2在37℃下当压力由8MPa升到10MPa时,其密度增加近一倍,压力的变化能显著提高SCF溶解物质的能力。
根据萃取压力的变化,可将SCF分为三类。
即高压时,SCF的溶解能力强,可最大限度地溶解所有成分,低压临界区仅能提取易溶解的成分或除去有害成分,中压区的选择萃取在高低压之间,可根据物料萃取的要求选择适宜的压力进行有效萃取。
压力增加到一定程度后,其溶解能力增加缓慢,这是由于高压下超临界相密度随压力变化缓慢所致。
另外,压力对萃取效果的影响还与溶质的性质有关。
3.2 萃取温度的影响温度对萃取效果的影响较为复杂。
温度对提高超临界流体溶解度的影响存在有利和不利2种趋势:一方面,温度升高,超临界流体密度降低,其溶解能力相应下降,导致萃取数量的减少;但另一方面,温度升高使被萃取溶质的挥发性增加,这就增加了被萃取物在超临界气相中的浓度,从而使萃取数量增大。
因此溶解度-温度曲线通常有最低点[8]。
3.3 其它条件的影响SFE中,萃取剂流量一定时,萃取时间越长,收率越高。
萃取刚开始时由于溶剂与溶质未充分接触,收率较低[9]。
随着萃取时间的加长,传质达到某种程度,则萃取速率增大,直到达到最大之后,由于待分离组分的减少,传质动力降低而使萃取速率降低。
萃取剂的流量大小主要影响萃取时间。
一般来说收率一定时流量越大,则溶剂、溶质间的传热阻力越小,则萃取的速度越大,所需要的萃取时间越短,但萃取回收负荷大,从经济上考虑应选择适宜的萃取时间和流量。
4 超临界萃取技术的应用超临界萃取技术在食品工业中用于茶叶、咖啡豆脱咖啡因;食品脱脂;酒花有效成分提取;植物色素的萃取;植物及动物油脂的萃取。
在医药工业中用于酶、维生素等的精制;动植物体内药物成分的萃取;医药品原料的浓缩、精制;糖类与蛋白质的分离以及脱溶剂脂肪类混合物的分离精制等。
在化妆品工业中用于天然香料的萃取;合成香料的分离精制;化妆品原料的萃取、精制。
从目前的发展状况看,超临界流体技术在以下几个方面发挥了重要的作用。
4.1 食品工业我国食品工业应用超临界萃取技术已逐步由实验室研究走向产业化,集中用在提取动植物油脂、食品杀菌,啤酒花提取,天然色素提取,米胚芽提取,桔皮中萜烯清油的提取及食品脱臭等方面。
4.2 精细化工在精细化工领域,超临界萃取技术应用于天然香料精油提取,烟草中提取香精,提取咖啡香气成分,植物中去植物碱,烟草中去尼古丁以及精制化妆品原料等。
4.3 医药工业在医药工业上,超临界流体技术主要用于重要有效成分提取,类类固醇类样品提取, EPA和DHA的提取,酶及维生素的精制回收等。
当用于天然药用植物有效成分提取时,主要具有如下优越性[10]:(1)萃取能力强选择最佳的萃取条件,可将待提取物萃取完全。
通过改变温度和压力还可有选择地分离天然植物中多种物质。
(2)萃取速度快10~20min可使产品分离析出,2~4 h左右便可完全提取。
(3)萃取污染少操作方便,无须使用大量有机溶剂,对环境友好。
4.4 环境方面(对土壤中多氯联苯的提取)环境样品中的污染物分析监测,水果中的农药残余物分析,超临界水氧化法处理有机废液,活性炭再生、石油加工,超临界络合萃取、超临界干洗等都是超临界萃取技术的应用。
在所有的超临界流体中,C02由于其合适的临界条件以及物理、化学特性而最为常用,已经在土壤和沉积物中PCBs的萃取中得到了广泛应用。
目前,大多数超临界萃取采用超临界二氧化碳流体,可添加有机溶剂修饰剂,用作植物物质、环境样品、聚合物和食品提取的溶剂。
超临界萃取具有分析选择性,提取效率可通过调节超临界流体密度、极性、温度及压力进行微调。
其对基质和分析物的依赖性很强,必须针对每一种物质和分析物进行优化。
因为超临界流体通常对较大分子量的有毒有机物有很强的溶解能力,可以较容易地将其从各被污染物中分离出来,因此该方法在环境保护中取得了良好效果。
此方法萃取过程简单迅速,通常只需几分钟或数十分钟即可完成操作[11]。
5 前景展望超临界流体由于具有独特的优点,它与常用的有机溶剂相比,是一种环境友好的溶剂(特别是超临界二氧化碳和超临界水),因而得到科研工作者的关注和青睐,以期用超临界技术解决更多、具有更高价值的问题,如可使用超临界CO2作为有机溶剂替代品,应用在生物、药物、食品包装和环保等领域;运用超临界流体技术制备粒度分布较窄的粒子,用于陶瓷、通讯、电子、激光技术等领域;世界上许多发达国家现已运用超临界技术发电;在中草药提取方面,由于超临界萃取的操作温度低、提取时间快、抗氧化物质、药用有效成分集中、无残留溶剂等,因此在祖国传统中药的应用发展上,将会具有更广阔的应用前景;在环境保护方面,超临界流体技术有效解决废水及城市污泥中难分解的有机物,不会对环境带来二次污染,在未来的环境治理中,它会具有更广泛的应用。
超临界流体在核废料的处理、有毒有害金属化合物的分离与清除,都将成为可行的工业过程;材料科学家们将继续探求利用超临界技术,生产作为高效催化剂的精细粉和用于电子工业的微薄膜产品。
总之,节约能源、保护环境是21世纪发展的两大主题。
超临界萃取技术是一种新型的分离方法,适应了时代的要求,在21世纪将具有广阔的发展。
参考文献[1] Korner J P. Design and construction of full-scale supercritical gas extraction plants. Chem Eng Progress, 1985, 81(4):63[2] 朱自强.超临界流体技术—原理和应用[M].北京:化学工业出版社,2000.[3] Srtahl E, Quirn K W, Gerars D. Dense gases for extraction and refining[M].New York: Springer –Verlay, 1986.[4] 雷小刚等.超临界流体萃取工艺与装置的研究开发.化工机械,1995,22(6):360[5] 方立.超临界萃取技术及应用[J].化学推进剂与高分子材料,2009,4(7):34[6] 安芸忠德.新的分离技术超临界抽出法[J].化学装置(日),1984,3(59):36-42.[7] 张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000[8] 李卫民,金箔,冯毅凡.中药现代化与超临界流体萃取技术[M].北京:中国医药科技出版社,2002.[9] 王建鸣,超临界萃取技术的新进展[J].高等函授学报(自然科学版), 2006,1(20): 57—58.[10] 尹卫萍,陈素兰.环境样品中有机物分析的前处理技术.江苏地质,2001,25(1):37[11] 李守君,张金龙,史伟国,等.超临界CO2流体萃取药用植物有效成分的研究进展[J].佳木斯大学学报(自然科学版)2004,22(3):374-377.。