CISCO交换机与华为交换机链路聚合链路聚合有成端口聚合,端口捆绑,英文名port trunking.功能是将交换机的多个低带宽端口捆绑成一条高带宽链路,可以实现链路负载平衡。
避免链路出现拥塞现象。
通过配置,可通过两个三个或是四个端口进行捆绑,分别负责特定端口的数据转发,防止单条链路转发速率过低而出现丢包的现象。
Trunking的优点:价格便宜,性能接近千兆以太网;不需要重新布线,也无需考虑千兆网传输距离极限问题;trunking可以捆绑任何相关的端口,也可以随时取消设置,这样提供了很高的灵活性还可以提供负载均衡能力以及系统容错。
命令:port-group <port-group-number> mode {active|passive|on}no port-group <port-group-number>功能:将物理端口加入Port Channel,该命令的no 操作为将端口从Port Channel 中去除参数:<port-group-number> 为Port Channel 的组号,范围为1~16;active(0)启动端口的LACP 协议,并设置为Active 模式;passive(1)启动端口的LACP 协议,并且设置为Passive 模式;on(2)强制端口加入Port Channel,不启动LACP 协议。
举例:在Ethernet0/0/1 端口模式下,将本端口以active 模式加入port-groupSwitch(Config-Ethernet0/0/1)#port-group 1 mode active命令:interface port-channel <port-channel-number>功能:进入汇聚接口配置模式命令模式:全局配置模式举例:进入port-channel1 配置模式Switch(Config)#interface port-channel 1Switch(Config-If-Port-Channel1)#举例1:如果交换机Switch1 上的1,2,3 端口都是access 口,并且都属于vlan 1,将这三个端口以active 方式加入group 1,Switch2 上6,8,9 端口为trunk 口,并且是allow all,将这三个端口以passive 方式加入group 2,将以上对应端口分别用网线相连。
方法1配置步骤如下:Switch1#configSwitch1 (Config)#interface eth 0/0/1-3Switch1 (Config-Port-Range)#port-group 1 mode activeSwitch1 (Config-Port-Range)#exitSwitch1 (Config)#interface port-channel 1Switch1 (Config-If-Port-Channel1)#Switch2#configSwitch2 (Config)#port-group 2Switch2 (Config)#interface eth 0/0/6Switch2 (Config-Ethernet0/0/6)#port-group 2 mode passiveSwitch2 (Config-Ethernet0/0/6)#exitSwitch2 (Config)# interface eth 0/0/8-9Switch2 (Config-Port-Range)#port-group 2 mode passiveSwitch2 (Config-Port-Range)#exitSwitch2 (Config)#interface port-channel 2Switch2 (Config-If-Port-Channel2)#配置结果:过一段时间后,shell 提示端口汇聚成功,此时Switch1 的端口1,2,3 汇聚成一个汇聚端口,汇聚端口名为Port-Channel1,Switch2 的端口6,8,9 汇聚成一个汇聚端口,汇聚端口名为Port-Channel2,并且都可以进入汇聚接口配置模式进行配置。
方法2:以ON 方式配置Port Channel.配置步骤如下:Switch1#configSwitch1 (Config)#interface eth 0/0/1Switch1 (Config-Ethernet0/0/1)# port-group 1 mode onSwitch1 (Config-Ethernet0/0/1)#exitSwitch1 (Config)#interface eth 0/0/2Switch1 (Config-Ethernet0/0/2)# port-group 1 mode onSwitch1 (Config-Ethernet0/0/2)#exitSwitch1 (Config)#interface eth 0/0/3Switch1 (Config-Ethernet0/0/3)# port-group 1 mode onSwitch1 (Config-Ethernet0/0/3)#exitSwitch2#configSwitch2 (Config)#port-group 2Switch2 (Config)#interface eth 0/0/6Switch2 (Config-Ethernet0/0/6)#port-group 2 mode onSwitch2 (Config-Ethernet0/0/6)#exitSwitch2 (Config)# interface eth 0/0/8-9Switch2 (Config-Port-Range)#port-group 2 mode onSwitch2 (Config-Port-Range)#exit配置结果:将交换机Switch1 上的1,2,3 三个端口依次加入port-group1 后我们可以看到,以on 方式加入一个组完全是强制性的,两端的交换机并不会通过交换LACP PDU 来完成汇聚,汇聚也是触发式的,当敲入将2 号端口加入port-group1 的命令时,1 和2 马上汇聚在一起形成port-channel1,当将3 号端口加入port-group1 时,1 和2 汇聚成的port-channel1 被拆散,马上1,2,3 三个端口又重新汇聚成port-channel1(需要说明的是,当有一个新的端口要加入已经汇聚成功的组时,必须先拆散原先的组,然后再能汇聚成一个新的组)。
结果是Switch1 和Switch2 上的三个端口都以ON 模式汇聚起来,各自形成一个汇聚端口。
总结:1;生成树,STP,主要作用是避免环路,网络中有冗余,经常使用多条链路就会产生环路,广播风暴,网络瘫痪,注意的是涉及网络时候千万不要忘记生成树的启动。
如图3,比如说一般大企业中核心交换机于其他交换机都是两条网线连接,这样其中一条出现错误另一条可以工作,但是如果PC2和PC1通信这样就容易出现环路,产生广播风暴,,生成树可以解决这个问题。
2:链路聚合:它的主要作用就是增加网络带宽,一种是交换机之间,如图二比如说两台交换机设备,用一根百兆网线级联,由于访问两台太大就会产生屏蔽,速度变慢,这个时间就可以使用链路聚合,使用port-group命令,建立链路聚合,多用两条网线连接交换机,并把两台交换机连接的端口各自聚合在一起,能增加网络带宽。
还有一种情况就是,如图一,交换机于服务器之间的链接,比如说一台服务器连接交换机上,如果访问量很大,那么服务器就会承受不了,就可以考虑多按两块网卡,使用链路聚合使两块网卡连接的端口聚合在一起,减轻服务器的负担。
链路聚合技术链路聚合技术亦称主干技术(Trunking)或捆绑技术(Bonding),其实质是将两台设备间的数条物理链路“组合”成逻辑上的一条数据通路,称为一条聚合链路,如Figure 1示意。
交换机之间物理链路Link 1、Link2和Link3组成一条聚合链路。
该链路在逻辑上是一个整体,内部的组成和传输数据的细节对上层服务是透明的。
链路聚合示意图聚合内部的物理链路共同完成数据收发任务并相互备份。
只要还存在能正常工作的成员,整个传输链路就不会失效。
仍以上图的链路聚合为例,如果Link1和Link2先后故障,它们的数据任务会迅速转移到Link3上,因而两台交换机间的连接不会中断(参见Figure2)。
链路聚合成员相互备份链路聚合的优点从上面可以看出,链路聚合具有如下一些显著的优点:提高链路可用性链路聚合中,成员互相动态备份。
当某一链路中断时,其它成员能够迅速接替其工作。
与生成树协议不同,链路聚合启用备份的过程对聚合之外是不可见的,而且启用备份过程只在聚合链路内,与其它链路无关,切换可在数毫秒内完成。
增加链路容量聚合技术的另一个明显的优点是为用户提供一种经济的提高链路传输率的方法。
通过捆绑多条物理链路,用户不必升级现有设备就能获得更大带宽的数据链路,其容量等于各物理链路容量之和。
聚合模块按照一定算法将业务流量分配给不同的成员,实现链路级的负载分担功能。
某些情况下,链路聚合甚至是提高链路容量的唯一方法。
例如当市场上的设备都不能提供高于10G的链路时,用户可以将两条10G链路聚合,获得带宽大于10G的传输线路。
此外,特定组网环境下需要限制传输线路的容量,既不能太低影响传输速度,也不能太高超过网络的处理能力。
但现有技术都只支持链路带宽以10为数量级增长,如10M、100M、1000M等。
而通过聚合将n条物理链路捆绑起来,就能得到更适宜的、n倍带宽的链路。
链路聚合的标准目前链路聚合技术的正式标准为IEEE Standard 802.3ad,由IEEE802委员会制定。
标准中定义了链路聚合技术的目标、聚合子层内各模块的功能和操作的原则,以及链路聚合控制的内容等。
其中,聚合技术应实现的目标定义为必须能提高链路可用性、线性增加带宽、分担负载、实现自动配置、快速收敛、保证传输质量、对上层用户透明、向下兼容等等。
链路聚合控制协议LACP链路聚合控制协议(Link Aggregation Control Protocol)是IEEE 802.3ad 标准的主要内容之一,定义了一种标准的聚合控制方式。
聚合的双方设备通过协议交互聚合信息,根据双方的参数和状态,自动将匹配的链路聚合在一起收发数据。
聚合形成后,交换设备维护聚合链路状态,当双方配置变化时,自动调整或解散聚合链路。
LACP协议报文中的聚合信息包括本设备的配置参数和聚合状态等,报文发送方式分为事件触发和周期发送。