当前位置:文档之家› 石墨烯的研究综述 7021214215 周新汇总

石墨烯的研究综述 7021214215 周新汇总

化学信息学课程论文化学还原法制备石墨烯的研究进展学号7021214215学生姓名周新所属学院生命科学学院专业应用化学班级18—2日期2016-10-2石墨烯的研究综述摘要:近年来,石墨烯以其独特的结构和优异的性能,在化学、物理和材料学界引起了广泛的研究兴趣。

石墨烯这样特殊的二维结构蕴含了多种奇特的物理现象,本文大量引用最新参考文献、综述了石墨烯的制备方法:物理方法 (微机械剥离法、液相或气相直接射离法)与化学法 (化学气相沉积法、晶体外延生长法、氧化还原法),并详细介绍了石墨烯的各种修饰方法,指出了石墨烯制备方法的发展趋势。

关键词:石墨烯;性能;结构;综述.Abstract: in recent years, the graphene with its unique structure and excellent performance, in chemistry, physics, and material field has attracted a great deal of research interest. Graphene such special two-dimensional structure contains a variety of unique physical phenomena, in this paper, a large number of references the latest references, reviews the preparation of graphene: physical methods (micro mechanical stripping method, the direct shot from liquid or gas phase method) with chemical method, chemical vapor deposition method, crystal epitaxial growth method, oxidation-reduction method), and various modification methods of graphene was introduced in detail, points out the development trend of graphene preparation.Key words: graphene, Performance; Structure; Reviewed in this paper.0 引言2004年,英国曼彻斯特大学的 Geim研究小组首次制备出稳定的石墨烯,推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论,震撼了整个物理界,引发了石墨烯的研究热潮。

理想的石墨烯结构可以看作被剥离的单原子层石墨,基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料,这是目前世界上最薄的材料一单原子厚度的材料。

这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质,石墨烯不仅有优异的电学性能,突出的导热性能,超常的比表面积,其杨氏模量和断裂强度也可与碳纳米管媲美,如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质。

石墨烯的主要性能均与之相当,甚至更好,避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题,而且制备石墨烯的原料价格便宜.正是由于石墨烯材料具有如此众多奇特的性质,引起了物理、化学、材料等不同领域科学家的极大研究兴趣,也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。

1.石墨烯碳—元素周期表中最有意思的元素,具有多种同素异形体:从早为人知的金刚石和石墨,到上世纪被发现的富勒烯[1]、碳纳米管[2],碳家族一直在给我们带来惊喜,而近年来,碳家族又添新成员——石墨烯(Gphene)[3],如图1.1 1所示。

石墨烯被认为是其它维度石墨材料的基本结构单元[4,5]:它可围裹成OD的富勒烯,卷曲成ID的纳米管,堆砌成3D的石墨。

2石墨烯的性能石墨烯的晶体结构2.1机械性能石墨烯材料抗拉强度达125GPa,是钢的100 多倍,1μm 长的石墨烯需要55N 的力才能断裂.原子间的强大作用力也使石墨烯具有很好的柔韧性,用原子力显微镜针尖测量其力学性能时,研究人员发现其弹性系数为105 N/m,其弹性模量为1.1TPa,而且厚度仅为0.335nm,物理学家安德烈·海姆说过,石墨烯是目前研究发现的自然界最薄、强度最高的材料,可以被无限拉伸,而且可以弯曲到很大角度不发生断裂,并且能够承受很大的压力[6]。

如果科学家将其制成普通塑料包装袋的厚度(约100nm),大概需要两万牛顿的压力才能把它扯断,也就是说将可以承受大约两吨重量的物体。

[7]而且可降解,对环境可以起到很好的保护作用,具有这样特性的石墨烯将作为添加剂在新型高强度复合材料中进行应用。

2.2电磁学性能由于石墨烯的各碳原子间连接柔软并具韧性,当外力接触时,碳原子层发生弹性形变,保证了化学结构的稳定,且石墨烯中碳原子以sp2 杂化连接,π电子于轨道平面之外垂直存在形成π键轨道,在轨道外,电子可以自由移动,使石墨烯具有优异的导电性。

杂化结构中大共轭体系也使电子传输能力很强,其电子迁移率达200000cm2/V/s,电子间具有的强相互作用力使石墨烯是零带隙半导体[6]。

单层石墨烯的电子结构表现出非约束抛物线电子式分散关系,使得石墨烯具有室温量子霍尔效应。

并且因为晶格结构稳定,有作用力,电子沿轨道运行的时候,不会发生散射,常温下即使碳原子间发生碰撞,电子仍能维持基本特性。

而且石墨烯中的电子运行速度是光速的1/300,远远超过了电子在一般导体中的运动速度,由此可见石墨烯的导电性质十分优异。

石墨烯边缘呈锯齿型,使其拥有孤对电子,这也使石墨烯具有铁磁性及磁开关等潜在的磁学性质。

研究人员还认为石墨烯是理想的自旋电子学材料,其自旋轨道作用小,碳元素核磁矩几乎没有。

用非局域磁阻效应能够测量出,在室温下,自旋注入石墨烯薄膜的可靠性很高,可以观测到自旋相干长度超过1 微米,使用电闸,还可以控制自旋电流的极性。

2.3热学性能室温下可测得石墨烯的导热率为(5.3±0.48)×103W/m/K,明显高于纳米级碳纳米管的导热率(3500W/m/K),是铜热导率的14倍。

常温下其载流子迁移率达15000cm2/V/s,是目前已知高迁移率的锑化钢材料的两倍,是商用硅的载流子迁移率的10倍以上,与单壁碳纳米管和多壁碳纳米管相比有明显提高。

如果处于低温骤冷的特定的温度下,石墨烯的载流子迁移率高达250000cm2/V/s,其热导率可达5000W/m/K,是目前世界上导热率最好、电阻率最低的材料。

综上表明石墨烯作为良好导热材料前景可观。

2.4光学特性由于石墨烯特有的低能量电子结构,所以单层石墨烯入射白光的吸收率约为2.3%。

这是因为在狄拉克点,电子和空穴的圆锥形能带会相遇,从而产生上述现象。

2.5力学特性石墨烯的杨氏模量和抗拉强度等基本力学性能参数是近年来石墨烯力学性能研究的主要内容之一。

由于“杨氏模量等力学参数属于连续介质框架下的.力学概念,所以必须在其厚度采用连续介质假设后计算其力学性能参数才有意义。

美国哥伦比亚大学的Hone研究小组通过纳米压痕仪技术测得石墨烯的断裂强度为(130士10)GPa,杨氏模量为(l .0士0. 1)TPa。

2.6功能化特性石墨烯特殊的二维高度共扼的结构形成了石墨烯片层之间具有较强的相互作用,溶解度很差.使石墨烯易于堆积不易剥离分散。

然而,石墨烯具有优异的功能化特性,通过引进特定的官能团,可以赋予石墨烯新的特性,让其在溶剂中分散,进而增强了石墨烯的成型加工性:石墨烯的功能化分为共价功能化和非共价功能化两种方式。

石墨烯的共价功能化是指通过化学反应在石墨烯表面形成共价键形式的官能团,通过这些官能团石墨烯增加了一些原来不具有的特性。

石墨烯共价功能化包含.石墨烯的小分子共价功能化、石墨烯聚合物共价功能化两种形式。

两者的区别为石墨烯聚合物共价功能化可以在较低功能程度上引入长的聚合物链从而辅助其分散。

浙江大学高超课题组和复旦大学卢红斌课题组在石墨烯共价功能化方面做得较为成功。

石墨烯的非共价功能化是指石墨烯通过π—π作用、疏水作用、范德华力、离子键等非共价键的方式在石墨烯上附加功能化官能团。

这种方法的好处是不破坏石墨烯的共扼结构,也不影响原有石墨烯的结构和功能,同时还能够使原有石墨烯达到不具备的功能特性。

石墨烯的非共价功能化包含石墨烯的二键功能化、石墨烯的疏水功能化以及石墨烯的离子功能化。

3石墨烯的制备3.1石墨层间插层法石墨插层复合物(GICs)是一种以大然鳞片白墨为原料·在石墨层间插人非碳物质的原子、分子甚至原一团等,形成新的层状化合物。

这种插层化合物不仅保留了石墨原有的性质。

同时也增加了一些新的物理化学特性。

G.Chen等早期采用了超声波粉碎并经过插层的膨胀石墨,自一次大量制备出厚度为几十纳米的纳.米石墨微片。

3.2微机械剥离法第一片独立的单层石墨烯片[31]就是通过所谓的微机械力剥离法得到的:即使用所谓的“scotchtape”将石墨片从高取向热解石墨(highlyorientedpyrolytic graphite,简写为HOPG)上反复剥离下来,后将石墨片转移到Si.Si02衬底上,得到需要的单层石墨烯。

但通过此法得到的不仅仅是单层石墨烯,往往是大量的多层石墨片中夹杂着单层、双层的石墨烯,需要使用光学显微镜结合AFM从中选出单层石墨烯1361,这将是一个非常庞大的工程,而且此法得到的独立石墨烯尺寸仅约10岬,只适合进行实验室理论研究,限制了其实际应用。

3.3化学气相沉积法微机械力剥离法虽然能得到高质量的石墨烯,但尺寸较小;通过化学沉积法(CVD)能得到尺寸较大(可达几个平方厘米)且高质的石墨烯。

PDMS[16]、PMMA[17]、SiO2及玻璃[18]等。

Keun Su Kim等人报道了一种以直流热等离子制备连续纳米片状石墨的新方法:采用中空电极型直流热等离子体吹管(石墨作阴极在外,铜作阳极在内),以氩气为等离子体发生气,甲烷气体在阴极区进气,最后得到平均厚度在10 ILrn以下的片状石墨[32]。

3.4外延生长法厘米级石墨烯的转移过程所谓外延生长法另一种晶体的方法。

即在一个晶体结构上采用晶格匹配生长出这种方法的优点是可以获得大面积、高质量的石墨烯。

外延法一般分为SIC外延法和金属外延法两类。

(1)在20世纪90年代。

相关主题