当前位置:文档之家› 天馈线系统及测试

天馈线系统及测试

天馈线系统及测试使用说明1.基站天馈线的结构从基站天线口用1/2”软跳线连接,再从硬馈线转换成软跳线连接到天线。

在这里,软跳线主要用于连接,而硬馈线的损耗较小,主要用于信号传输。

室外馈线及接头处要接地。

也可采用塔顶放大器放大上行信号,以提高基站的接收灵敏度。

如图3-1所示。

图3-1基站天馈线的结构2.天线2.1天线的基本概念1.天线的作用天线是发射机发射无线电波和接收机接收无线电波的装置,发射天线将传输线中的高频电磁能转换为自由空间的电磁波,接收天线将自由空间的电磁波转换为高频电磁能。

因此,天线是换能装置,具有互易性。

天线性能将直接影响无线网络的性能。

2.天线辐射电磁波的基本原理导线载有交变电流时,就可以形成电磁波的辐射,辐射的能力与导线的长短和形状有关。

当两导线的距离很近、电流方向相反时,两导线所产生的感应电动势几乎可以抵消,因而辐射很微弱;如果将两导线张开,这时由于两导线的电流方向相同,由两导线所产生的感应电动势方向相同,因而辐射较强。

当导线的长度远小于波长时,导线的电流很小,辐射很微弱;当导线的长度增大到可与波长相比拟时,导线上的电流就大大增加,因而就能形成较强的辐射。

通常将上述能产生显著辐射的直导线称为振子。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长的称为半波振子;全长与波长相等的振子,称为全波对称振子;将振子折合起来的,称为折合振子。

实际天线是由振子叠放组成的。

如图3-2所示。

图3-2 天线辐射电磁波原理图3.天线的极化(1)电磁波的极化无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。

无线电波的电场方向称为电波的极化方向。

如果电波的电场方向垂直于地面,我们就称它为垂直极化波。

如果电波的电场方向与地面平行,则称它为水平极化波。

如图3-3。

图3-3 电磁波的极化方向(2)天线的极化天线辐射的电磁场的电场方向就是天线的极化方向。

垂直极化波要用具有垂直极化特性的天线来接收;水平极化波要用具有水平极化特性的天线来接收;当来波的极化方向与接收天线的极化方向不一致时,在接收过程中通常都要产生极化损失。

如图3-4所示。

(3)双极化天线两个天线为一个整体,分别传输两个独立的波。

两附天线的振子相互呈垂直排列。

双极化天线减少了天线的数目,施工和维护更加简单。

如图3-5所示。

垂直极化水平极化+45度倾斜极化-45度倾斜极化图3-4 天线的极化图3-5 双极化天线原理2.2天线的性能参数表征天线性能的主要参数包括电性能参数和机械性能参数。

电性能参数(Electrical properties)有工作频段、输入阻抗、驻波比、极化方式、增益、方向图、水平垂直波束宽度、下倾角、前后比、旁瓣抑制与零点填充、功率容量、三阶互调、天线口隔离。

机械参数(Mechanical properties)有尺寸、重量、天线罩材料、外观颜色、工作温度、存储温度、风载、迎风面积、接头型式、包装尺寸、天线抱杆、防雷。

这里主要讨论电性能参数。

1.天线的方向性天线的方向性是指天线向一定方向辐射或接收电磁波的能力。

对于接收天线而言,方向性表示天线对不同方向传来的电波所具有的接收能力。

各种通信设备对天线方向性的要求是不同的,例如精密测量雷达要求天线辐射的电磁波集中在极小的空间立体角内;而无线广播则要求在水平面内向所有方向均匀辐射。

天线方向性的获得是通过天线内部加反射板或振子叠放而实现的。

天线的方向性通常用方向图来表示。

方向图是以天线为中心,某一距离为半径做球面(或圆周),按照球面上各点电场强度与该点所在的方向角而绘出的对应图形。

一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平方向图和垂直方向图。

在移动通信中常用的对称振子天线方向图如图3-6所示的是垂直方向图。

图3-6 天线的垂直方向图2.天线的增益增益是用来表示天线集中辐射的程度。

其在某一方向的定义是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的场强的平方之比,即功率之比。

增益一般与天线方向图有关,方向图主瓣越窄,后瓣、副瓣越小,增益越高。

增益的单位用“dBi”或“dBd”表示,如图3-7所示。

图3-7 “dBd和“dBi”的区别一个天线与对称振子相比较的增益,用“dBd”表示;一个天线与各向同性辐射器相比较的增益用“dBi”表示。

5.17dBd = 3dBi或dBi=dBd+2.15。

天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。

一般来说,增益的提高主要是依靠减少垂直面向辐射的波束宽度,而在水平面上保持全向的辐射特性。

天线增益对移动通信系统运行极为重要,因为它决定蜂窝边缘的信号电平。

增加增益就可以在一确定方向上增大网络的覆盖范围,或者在确定范围内增大增益余量。

3.前后比方向图中,前后瓣最大电平之比称为前后比。

前后比大表示天线定向接收性能就好。

基本半波振子天线的前后比为1,所以对来自振子前后的相同信号电波具有相同的接收能力,如图3-8。

图3-8 前后比示意图4.波束宽度在方向图中通常都有两个瓣或多个瓣,其中最大的瓣称为主瓣,其余的瓣称为副瓣。

主瓣两半功率点间的夹角定义为天线方向图的波瓣宽度,称为半功率(角)瓣宽。

主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。

如图3-9所示。

方位(即水平面方向图)俯仰面(即垂直面方向图)图3-9 天线的波束宽度以下是GSM900中常用天线的特性参数:于密集城市地区典型基站三扇区配置的覆盖(用得最多),90°水平波束多用于城镇郊区典型基站三扇区配置的覆盖。

5 .天线的工作频率范围(带宽)无论是发射天线还是接收天线,它们总是在一定的频率范围内工作的,通常,工作在中心频率时天线所能输送的功率最大(谐振),偏离中心频率时它所输送的功率都将减小(失谐),据此可定义天线的频率带宽。

有几种不同的定义:一种是指天线增益下降三分贝时的频带宽度;一种是指在规定的驻波比下天线的工作频带宽度。

在移动通信系统中是按后一种定义的,具体的说,就是当天线的输入驻波比≤1.5时,天线的工作带宽。

当天线的工作波长不是最佳时天线性能要下降。

在天线工作频带内,天线性能下降不多,仍然是可以接受的。

6.天线的输入阻抗天线和馈线的连接端,即馈电点两端感应的信号电压与信号电流之比,称为天线的输入阻抗。

输入阻抗有电阻分量和电抗分量。

输入阻抗的电抗分量会减少从天线进入馈线的有效信号功率,因此,必须使电抗分量尽可能为零,使天线的输入阻抗为纯电阻。

输入阻抗与天线的结构、尺寸和工作波长有关,基本半波振子,即由中间对称馈电的半波长导线,其输入阻抗为(73.1+j42.5)欧姆。

当把振子长度缩短3%~5%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,即使半波振子的输入阻抗为73.1欧(标称75欧)。

而全长约为一个波长,且折合弯成U形管形状由中间对称馈电的折合半波振子,可看成是两个基本半波振子的并联,而输入阻抗为基本半波振子输入阻抗的四倍,即292欧(标称300欧)。

天线的输入阻抗的计算是比较困难的,只有极少数形状最简单的天线能严格地按理论计算出来,一般在工程上直接用实验来确定天线的输入阻抗。

移动通信系统中通常在发射机与发射天线间,接收机与接收天线间用传输线连接,要求传输线与天线的阻抗匹配,才能以高效率传输能量,否则,效率不高,必须采取匹配技术实现匹配。

7.天线的驻波比(1)电压驻波比当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。

馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当天线和馈线不匹配时,也就是天线阻抗不等于馈线特性阻抗时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量。

入射波的一部分能量反射回来形成反射波。

在不匹配的情况下,馈线上同时存在入射波和反射波。

两者叠加,在入射波和反射波相位相同的地方振幅相加最大,形成波腹;而在入射波和反射波相位相反的地方振幅相减为最小,形成波节。

其它各点的振幅则介于波幅与波节之间。

这种合成波称为驻波。

反射波和入射波幅度之比叫作反射系数。

反射波幅度反射系数Γ=─────(3.1)入射波幅度驻波波腹电压与波节电压幅度之比称为驻波系数,也叫电压驻波比(VSWR)驻波波腹电压幅度最大值Vmax (1+Γ)驻波系数S=──────────────=──── (3.2)驻波波节电压辐度最小值Vmin (1-Γ)终端负载阻抗和特性阻抗越接近,反射系数越小,驻波系数越接近于1,匹配也就越好。

工程中一般要求VSWR<1.5,实际中一般要求VSWR<1.2。

(2)回波损耗RL它是反射系数的倒数,以分贝表示。

RL的值在0dB到无穷大之间,回波损耗越小表示匹配越差,反之则匹配越好。

0dB表示全反射,无穷大表示完全匹配。

在移动通信中,一般要求回波损耗大于14dB(对应VSWR=1.5)。

RL=10lg(入射功率/反射功率)(3.3)例如Pf=10W,Pr=0.5W,则RL=10lg(10/0.5)=13dB表3-2是SWR与RL值的转换关系表3-28.天线倾角当天线垂直安装时,天线辐射方向图的主波瓣将从天线中心开始沿水平线向前。

为了控制干扰,增强覆盖范围内的信号强度,及减少零凹陷点的范围,一般要求天线主波束有一个下倾角度。

天线倾角定义了天线倾角的范围,在此范围内,天线波束发生的畸变较小。

天线倾角变化对对覆盖小区形状的变化影响如图3-10所示。

由图可见,机械下倾角度过大,会造成波束的畸变。

天线下倾有两种方式:机械的方式和电调方式。

图3-10 天线下倾角2.3 天线类型天线的种类很多,按工作频带分有800MHZ、900MHZ、1800MHZ、1900MHZ;按极化方式分有垂直极化天线、水平极化天线、+450线极化天线、圆极化天线;按方向图分有全向天线、定向天线;按下倾方式分有机械下倾、电调下倾;按功能分有发射天线、接收天线、收发共用天线。

天线的发展趋势是向多频段、多功能、智能化方向发展。

根据所要求的辐射方向图(覆盖范围),可以选择不同类型的天线。

下面简要地介绍移动通信基站中最常用的天线类型。

1.机械天线所谓机械天线,即指使用机械调整下倾角度的移动天线。

机械天线安装好后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。

在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。

实践证明:机械天线的最佳下倾角度为10~50;当下倾角度在50~100之内变化时,其天线方向图稍有变化但变化不大;当下倾角度在100~150之间变化时,其天线方向图变化较大;当机械天线下倾超过150以后,天线方向图形状改变很大。

相关主题