当前位置:
文档之家› 翅片管换热器传热性能及强化分析
翅片管换热器传热性能及强化分析
得不少成果, 如通过增加肋片、 增强流体扰流等提高 传热能力等等。从早期的铸铁式换热器开始, 人们就 设法提高肋片的高度,减小肋片的厚度以提高传热 能力, 但是受制造水平和工艺的影响, 肋片的高度和 厚度已被限制在一定尺度。随着制造水平和加工工
!""# 年 $! 月刊
艺的提高,发展了各种更高效的肋片。在空调行业 中, 象光管绕铝翅片、 皱折翅片、 镶片、 轧片、 套片、 串 片等翅片管式换热器渐渐形成了行业的主力 产 品 。 随着我国空调行业的成熟,各厂家为了追求更大的 利润空间,如何在现有的条件下生产出传热性能更 好的翅片管换热器, 便成为一个重要的问题。本文通 过对现有空调行业中常见的空气处理机用铜管铝串
—— %I—接触效率, /2F=;
JKI 翅 片 外 侧 圆 管 部
换热热阻的降低, 同样也可以使换热性能得到提高 。 分表面积, ,#; 如 图 = 所
JKI && A)G ;#LMC :! N
( !////"5) LM< ( !/) 其中, 管外径; )G: —— LM—翅片厚度; —— "5—翅片间nned-tube heating exchangers . overall coefficient of heating transfer
:".;290 fined-tube heating exchanger
0
引言 人们对换热器的强化传热方法的研究,早已取
中央空调终端产品空气处理机上常用的铜管铝 串片结构如图 1 所示。铜管采用 !!"#$%&,铜管叉 如图 *。翅片材质为铝翅片, 厚度 排, 管间距 ’()), 和翅片间距各厂家有所不同,此处以大连某空调设
#
定性分析翅片管换热器传热性能 首先,我们从理论上定性探讨翅片管换热器的
传热表面来破坏原来未强化的流体速度和温度分布 场。 层流的换热热系数比较低,通常比较经济的强 化措施是产生涡流或变为紊流。同时提高流速后, 能 减少管内壁积垢, 减少污垢热阻。 在紊流中传热热阻主要来自于层流底层, 热边界 层 ; 和管径 < 的比值为 ;/<)1$=>0!"?@$
!!!"#$$%&’()*+,-."#$/
翅片管换热器运行中, 铜管内走工质水, 换热形 式为管内流体强制对流换热, 外侧为空气, 换热形式 为流体横掠圆管的强制对流。管内侧水的换热过程 中没有相变, 属于单相换热, 该情况下换热器单根管 每米长的换热量为:
()*+!,%
忽略管壁热阻和污垢热阻,相对于管外壁面的 传热系数为:
/0+ $1#21,!3: !4$4#$$ 5!/6%・ 78 $,$-#..,
!
表2
管内水速 0.6m /& 翅片间距 !#(%% 时, 各迎面风速下的传热系数
风速 传热系数 K 空气侧换热系数 !o 翅片 翅片管外表 肋化 ( 效率 "t 面积 F ( ・ ・ m/s )[kW/( m 2 !)] [kW/( m 2 !)] m 2)系数 #
!""# 年 $! 月刊
其中, —— S!—管间距, /2/+3,; 管排间距, S#: /2/++,。 根据以上计算方法, 我们分别对应空气侧、 水侧 的不同状况对传热系数进行了计算, 结果如下: 盘管管内水速 /24,/-U 翅片间距 +24+,,, !) $%? ・ 43492FF,01?4!2D!, !*: #+4+244@!/A,# BC 表1 管内水速 /24,/- 翅片间距 +24+,, 时, 各迎面风速下的传热系数
!"#$%&’ ()*+#&’" ,&#-./%/ #&0 (&+#&*"1"&$ 23 4%&&"05678" !"#$%&’ ()*+#&’"9/
by Chen Guoping * ,8/$9#*$ Describe the enhancement heat exchange enhancement Huang Qunshan
%
!"#$%&%’( !)"#*$’!
技术交流
翅片管换热器 传热性能及强化分析
大连冰山空调设备有限公司 陈国平 * 黄群山 大连宏达港湾开发建设咨询有限公司
摘
要
结合对翅片管换热器的传热性能 的 分 析 , 比较几种运行状态下的换热器的传热效果的差异, 进而对此
类换热器传热的强化手段加以探讨。 关键词 翅片管式换热器 传热系数 换热强化
E-mail : william_chen_cn@163 .com
!
备厂家产品为例,翅片厚度为 !"##$%%,翅片间距 翅片上有双桥条缝以增加空气扰流。 翅片形 &"’&%%, 式如图 & 所示。
!"#$%&%’( !)"#*$’!
技术交流
图4 图2 图3
总传热系数 K 与 "/、 "- 的关系
铜管排列形式
翅片形式
当 "-7"/ 时 8 增加 "-, 直到变成等于 + 增加很快, 当 "-9"/ 时, 增加 "-, 再进一 "/; + 增加的速度很慢, 步增加时, + 几乎不增加。可以看到, + 的值绝对不 而且当 "-7"/ 时, 即使管内的换热系 会超过 "- 的值。 总的传热系数 + 也只能达到 数很大, 甚至 "/!: 时, 或趋近于管子换热系数较小的 "- 值; 反之亦然。我 们可以将这个现象称为换热瓶颈现象。因此强化换 ( #) 热系数大的一侧是收不到显著效果的。只有设法强 化限制总传热系数的主要矛盾,即换热系数小的换 热瓶颈侧才行。 ( 1) 对于管内外换热均为单相流对流换热,其换热 系数都和流体流速的幂指数成比例增长。流体流动 分为层流和紊流, 流体在其边界层内速度梯度很大, 而在边界层外的流动核心区内,在流体流速法向方 向上速度变化已经为零;紊流流体在层流底层中的 速度梯度最大,而紊流边界层紊流核心区的速度变 化已经较为平缓。传热和流动相似, 也存在边界层, 只是热边界层厚度要比流动边界层小很多。 层流和紊流强化的主要机理就是利用增加二次
A#B
传热强化。 为了提高传热性能,主要是提高流体的换热系 数 "/ 、 "-。但并不是将两者一味的提高就好。我们可 加以简化, 即认为传 以将上面的传热系数计算式( 1)
0# 热系数仅由以下两方面构成: ,该式 +)( #/"/.#/"-)
,例如 =>)
。 为了便于分 可转换为: +)"//( #."//"-) )"-/( #."-/"/) 析和观察, 将上式绘制成图线, 如图 6 所示:
( !#)
01&!* )* /#(
—— ・ !*—管内流体对流换热系数, @!/A,# BC; —— )*—管内径, /2/!=9 ,; —— 空调用 DE!#B 冷水 #(—管内流体导热系数, 取 /2///=D9@!/A, ・ BC。 —— 空调用的 DE!#B冷水, 其 56 56—普朗特常数, 值取 F2=#; —— 8—单位管长 !,。
&!
"&%IAJKI;%LJMC
3.0
!
盘 管 管 内 水 速 "#$%/&’ 翅 片 间 距 !#(%%, !) )*+
!"#$%&%’( !)"#*$’!
技术交流
热效果还是提高了。所以在换热瓶颈处对换热的加 强才有意义。 对于家用空调等有相变换热的翅片管换 热 器 , 管外侧的传热强化和上述单相换热管外侧类似, 管 内侧则分为冷凝和蒸发两种情形,冷凝传热热阻主 要来自是冷凝膜厚度的导热热阻,强化传热主要是 通过利用表面张力获得很薄的冷凝膜厚度或及时从 冷凝表面排走冷凝液;蒸发换热强化的机理则是薄 膜态蒸发、 对流沸腾和核态沸腾。 同样有相变传热的 翅片管换热器的换热瓶颈也是在管外侧。此处我们 就对有相变换热的翅片管换热器的换热形式不做展 开的讨论。 传热强化是一个涉及面比较广的问题,我们不 仅要从传热性能上去分析,还要从实现工艺和成本
0# +)( #/"-.#/"/)
其中: —— *—翅片管外表面总面积, m 2; —— ・ +—传热系数, 2!/3 %1 45; —— !,%—对数平均温差, 4; —— ・ "-—管外侧流体换热系数, 2!/3 %1 45; —— #—肋化系数; —— ・ "/—管内侧流体换热系数, 2!/3 %1 45。
0.672 0.663 0.654 0.645 0.638 0.630 0.623 0.617
14.27 14.06 13.87 13.70 13.53 13.37 13.22 13.08
4) 盘 管 管 内 水 速 "#,%/&’ 翅 片 间 距 !#(%%, )*+
・ .1(4#4!, /0+ ,1#$$, !3: 41!2#,15!/6%! 78 表3 管内水速 "#,%/& 翅片间距 !#(%% 时, 各迎面风速下的传热系数
大学, 助理工程师 * 陈国平, 1976 年, 电话: 0411-86649121 地址: 大 连 市 沙 河 口 区 西 南 路 888 号 大 连 冰 山 空调设备有限公司技术部( 116033 ) 图1 铜管铝串片结构