当前位置:文档之家› 碳纳米材料概述

碳纳米材料概述

碳纳米材料概述名字:唐海学号:1020560120前言纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。

分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。

纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。

近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。

2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。

根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。

德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。

碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。

分类(1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。

(2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。

碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。

碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。

美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。

(3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm一1μm之间;(3)碳微珠,直径在11μm以上。

另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。

碳纳米材料的性质及相关应用1.力学(1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。

(2)材料增强体用于增强金属、陶瓷和有机材料等。

并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

2.隐身材料碳纳米管对红外和电磁波有隐身作用: 纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率; 纳米微粒材料的比表面积比常规粗粉大3~4个数量级,对红外光和电磁波的吸收率也比常规材料大得多。

因此,红外探测器及雷达得到的反射信号强度大大降低,很难发现被探测目标,起到了隐身作用。

由于发射到该材料表面的电磁波被吸收,不产生反射,因此而达到隐形效果。

3.能源(1)储氢材料按5人座的轿车行使500公里计算,需要3.1Kg的氢气,以正常的油箱体积计算,氢气的存储密度应有6.5wt%,目前的储氢材料都不能满足这一要求。

碳纳米管由于其管道结构及多壁碳管之间的类石墨层空隙,使其成为最有潜力的储氢材料,国外学者证明在室温和不到1bar的压力下,单壁碳管可以吸附氢气5-10wt%。

根据理论推算和近期反复验证,普遍认为碳纳米管的可逆储/放氢量在5wt%左右,即使5wt%,也是迄今为止最好的储氢材料。

(2)锂离子电池锂离子电池正朝高能量密度方向发展,最终为电动汽车配套,并真正成为工业应用的非化石发电的绿色可持续能源,因此要求材料具有高的可逆容量。

碳纳米管的层间距略大于石墨的层间距,充放电容量大于石墨,而且碳纳米管的筒状结构在多次充-放电循环后不会塌陷,循环性好。

碱金属如锂离子和碳纳米管有强的相互作用。

用碳纳米管做负极材料做成的锂电池的首次放电容量高达1600mAh/g,可逆容量为700mAh/g,远大于石墨的理论可逆容量372mAh/g。

4.纳米器件( 纳米导线 )碳纳米管的直径仅数纳米至数十纳米,耐电流密度可达铜的100多倍,可以作为超级耐高电流密度的布线材料,半导体型的碳纳米管还可以用来构筑纳米场效应晶体管、单电子晶体管等纳米器件,变频器、逻辑电路以及环形振荡器等各种逻辑电路。

IBM的研究人员已经在单一“碳纳米管”分子上构建了首个的完整电子集成电路,比当今的硅半导体技术具有更为强大的性能,具有里程碑式的重大意义。

5.电子器件(1) 场致发射纳米级发射尖端、大长径比、高强度、高韧性、良好的热稳定性和导电性等,使得碳纳米管成为理想的场致发射材料!有望在冷发射电子枪、平板显示器等众多领域中获得应用。

日本已制出该类技术的彩色电视机样机,其图象分辨率是目前已知其它技术所不可能达到的。

用碳纳米管制成的电子枪与传统的相比,不但具有在空气中稳定、易制作的特点,而且具有较低的工作电压和大的发射电流,适用于制造大的平面显示器。

使用具有高度定向性的单壁碳纳米管作为电子发送材料,不但可以使屏幕成像更清晰,还可以缩短电子到屏幕之间的距离,使得制造更薄的壁挂电视成为可能。

(2)新型的电子探针碳纳米管具有大长径比、纳米尺度尖端、高模量,是理想的电子探针材料。

不易折断:即使与被观察物体的表面发生碰撞,纳米碳管也不易折断,碳纳米管可与被观察物体进行软接触。

灵活性高:碳纳米管笼状碳网状结构,可以进入观察物体不光滑表面的凹陷处。

能更好显现被观察物体的表面形貌和状态,有很好的重现性。

用碳纳米管作为这类电子显微镜的探针,不仅可以延长探针的使用寿命,而且可极大的提高显微镜的分辨率。

特别是扩展了原子力显微镜等探针型显微镜在蛋白质、生物大分子结构的观察和表征中的应用。

(3) 超级电容器多孔碳不但微孔分布宽(对存储能量有贡献的孔不到30%),而且结晶度低,导电性差,容量小。

碳纳米管结晶度高、导电性好、比表面积大、微孔大小可通过合成工艺加以控制,比表面利用率可达100%,超级电容器极限容量骤然上升了3-4个数量级,循环寿命在万次以上(使用年限超过5年)。

在移动通讯、信息技术、电动汽车、航空航天和国防科技等方面具有极其重要和广阔的应用前景。

(4)大功率超级电容器快速充放电特性:在汽车启动和爬坡时快速提供大电流及大功率电流,在正常行驶时由蓄电池快速充电;在刹车时快速存储发电机产生的大电流,这可减少电动车辆对蓄电池大电流充电的限制,大大延长蓄电池的使用寿命,提高电动汽车的实用性;对于燃料电池电动汽车的启动更是不可少的。

若其容量能进一步提高,可望取代电池使用。

6.传感器碳纳米管吸附某些气体之后,导电性发生明显改变,因此可将碳纳米管做成气敏元件对气体实施探测报警。

在碳纳米管内填充光敏、湿敏、压敏等材料,还可以制成纳米级的各种功能传感器。

纳米管传感器将会是一个很大的产业。

7.纳米机械美国中国和巴西的科学家发明了能称量亿亿分之二百克的单个病毒的“纳米秤”,通过测量振动频率可以测出粘结在悬臂梁一端的颗粒的质量。

莫斯科大学的研究人员将少量纳米管置于29Kpa的水压下(相当于水下18000千米深的压力)做实验。

不料,未加到预定压力的1/3,纳米管就被压扁了。

他们马上卸去压力,它却像弹簧一样立即恢复了原来形状。

于是,科学家得到启发,发明了用碳纳米管制成像纸张一样薄的弹簧,用作汽车或火车的减震装置,可大大减轻车辆的重量。

(注:这一点非常有趣)8.催化特点:高稳定性、高比表面积、便于化学处理等。

由于碳纳米管具有纳米级的内径,类似石墨的碳六元环网和大量未成键的电子,可选择吸附和活化一些较惰性的分子,研究发现其在600℃的催化活性优于贵金属铑,并很稳定。

这将在石化和化工产业界带来不可估量的革新和效益。

碳纳米管与金属离子之间的相互作用,使金属离子能在常温下自动趋于还原态,这对金属纳米导线的制备无疑很有裨益。

总结碳纳米材料在现代科技发展中扮演者举足轻重的角色,尤其是它的高稳定性,高强度,低密度,极好的绝热性等异于传统材料的性能使它受到越来越多的关注。

参考文献[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) .[2] 温轶,施利毅,方建慧,曹为民. 压缩集结碳纳米管电极对活性艳红染料的电催化降解研究[J]. 化学学报, 2006,(05) .[3] 张新荣,姚成漳,王路存,曹勇,戴维林,范康年,吴东,孙予罕. 甲醇水蒸气重整制氢的高效碳纳米管改性Cu/ZnO/Al_2O_3催化剂[J]. 化学学报, 2004,(21) .[4] 唐文华,邹洪涛,张艾飞,刘吉平. 碳纳米管纯化技术评价与研究进展[J]. 炭素, 2005,(03) .[5] 陈灿辉,李红,朱伟,张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005,(10) .[6] 方建慧,温轶,施利毅,曹为民. 碳纳米管电极电催化氧化降解染料溶液的研究[J]. 无机材料学报, 2006,(06) .[7] 赵弘韬,张丽芳,张玉宝. 碳纳米管纯化工艺的研究[J]. 科技创新导报, 2008,(26) .[8] 李权龙,袁东星. 多壁碳纳米管用于富集水样中有机磷农药残留的研究[J]. 厦门大学学报(自然科学版), 2004,(04) .[9] Chamber A,Nemes T,Rodriguez N M,et al. Catalytic be-havior of Graphite nanofiber supported nickel parison with other support media[J] .Phys ChemB, 1998, 102 (12) :2251-2258 .[10] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel particles.2.The influence of the nanofiberstructure[J] .Phys Chem B, 1998, 102 (26) :5168-5177 .[11] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel particles.3.The effect of chemical blocking onthe performance of the system[J] .Phys Chem B, 1999, 103 (13) :2454-2460 .[12] Mestl G,Maksimova N I,Schlogl R. Catalytic activity ofcarbon nanotubes and other carbon materials for oxidative de-hydrogenation of ethylbenzene to styrene[J] .Stud Sur SciCatal, 2001, 40 :2066-2072 .[13] Keller N,Maksimova N I,Roddatis V V,et al. The cata-lytic use of onion-like carbon materials for styrene synthesisby oxidative dehydrogenation of ethylbenzene[J] .AngewChem Int Ed, 2002, 41 (11) :1885-1888。

相关主题