自动调节系统频域分析
班级11081801
学号1108180135
姓名王佳炜
日期2014.1.5
线性系统的频域分析
一、实验目的
1.掌握用MATLAB 语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、实验内容
1.典型二阶系统
2
2
22)(n
n n
s s s G ωζωω++= 绘制出6=n ω,1.0=ζ,0.3,0.5,0.8,2的bode 图,记录并分析ζ对系统bode 图的影响。
解:
程序如下:
num=[0 0 36];den1=[1 1.2 36];den2=[1 3.6 36]; den3=[1 6 36];den4=[1 9.6 36];den5=[1 24 36]; w=logspace(-2,3,100); bode(num,den1,w) grid hold
bode(num,den2,w) bode(num,den3,w) bode(num,den4,w) bode(num,den5,w)
-100-80-60-40-200
20M a g n i t u d e (d B
)10
-2
10
-1
10
10
1
10
2
10
3
P h a s e (d e g )
Bode Diagram
Frequency (rad/sec)
分析:随着.0=ζ的增大
,伯德图在穿越频率处的尖峰越明显,此处用渐近线代替时误差越大. 2.系统的开环传递函数为
)
5)(15(10
)(2
+-=
s s s s G )
106)(15()
1(8)(22++++=
s s s s s s G
)
11.0)(105.0)(102.0()
13/(4)(++++=
s s s s s s G
绘制系统的Nyquist 曲线、Bode 图,说明系统的稳定性,并通过绘制阶跃响应曲线验证。
解: 程序如下 奈氏曲线:
(1) num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); w=logspace(-1,1,100); nyquist(num1,den1,w)
-80-60
-40
-20
20
40
60
80
Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
(2) num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); w=logspace(-1,1,100);
nyquist(num2,den2)
-0.25
-0.2-0.15-0.1-0.0500.050.1
0.150.20.25Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
(3) num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1]))); w=logspace(-1,1,100); nyquist(num3,den3)
Nyquist Diagram
Real Axis
I m a g i n a r y A x i s
分析:系统1,2 不稳定,系统3稳定。
伯德图:
num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10])));
num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1]))); bode(num 1,den1) grid hold
bode(num2,den2) bode(num3,den3)
-300-200
-100
100
M a g n i t u d e (d B
)10
-2
10
-1
10
10
1
10
2
10
3
P h a s e (d e g )
Bode Diagram
Frequency (rad/sec)
分析:系统1,2 不稳定,系统3稳定。
阶跃响应曲线
(1)num1=[0,0,10];den1=conv([1,0],conv([1,0],conv([5,-1],[1,5]))); step(num1,den1) grid
8
Step Response
Time (sec)
A m p l i t u d e
(2) num2=[8,8];den2=conv([1,0],conv([1,0],conv([1,15],[1,6,10]))); step(num2,den2)
grid
4
Step Response
Time (sec)
A m p l i t u d e
(3) num3=[4/3,4];den3=conv([1,0],conv([0.02,1],conv([0.05,1],[0.1,1]))); step(num3,den3) grid
1000
2000
3000
4000
5000
6000
7000
Step Response
Time (sec)
A m p l i t u d e
3.已知系统的开环传递函数为)
11.0(1
)(2
++=
s s s s G 。
求系统的开环截止频率、穿越频率、幅值裕度和相位裕度。
应用频率稳定判据判定系统的稳定性。
解:绘出系统伯德图,程序如下 num=[0 0 1 1]; den=[0.1 1 0 0]; w=logspace(-2,3,100); bode(num,den,w)
[gm,pm,wcg,wcp]=margin(num,den); gm,pm,wcg,wcp grid
Bode Diagram
Frequency (rad/sec)
-150-100-50050
100
M a g n i t u d e (d B )10
-2
10
-1
10
10
1
10
2
10
3
-180
-150
-120
P h a s e (d e g )
gm =0 pm =44.4594 wcg =0 wcp =1.2647
分析: 系统截止频率Wc=1.2647,相角裕度r=44.4594,幅值裕度hg=0,穿越频率Wg=0
因此系统稳定。
三.实验心得与体会
总结:通过这次实验,我掌握了各种图形的matlab 绘制方法,加深了对课本上各种稳定性判别方法的理解,学会了用软件作图判定系统稳定性,进一步了解了各种系统参数对系统性能的影响。