当前位置:文档之家› 纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。

关键词:纳米材料;纳米材料制备;纳米材料性能;应用0 引言自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。

纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。

纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。

纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。

纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。

纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。

纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。

纳米薄膜分为颗粒膜与致密膜。

颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。

可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。

纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复合)、纳米微粒与薄膜复合( 0- 2 复合) 、不同材质纳米薄膜层状复合( 2- 2 复合) 等。

纳米复合材料可利用已知纳米材料奇特的物理、化学性能进行设计,具有优良的综合性能,可应用于航空、航天及人们日常生产、生活的各个领域。

纳米结构是以纳米尺度的物质单元为基础,按一定规律构筑或营造的一种新体系。

这些物质单元包括纳米微粒、稳定的团簇或人造原子、纳米管、纳米棒、纳米丝以及纳米尺寸的孔洞等。

我国于20世纪80年代末开始进行纳米材料的研究,近年来,在纳米材料基础研究领域,取得了重大的进展,已能采用多种方法制备金属与合金氧化物、氮化物、碳化物等化合物纳米粉体,研制了相应的设备,做到了纳米微粒的尺寸可控,并研制了纳米薄膜和纳米块体。

在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合等许多方面有所创新。

成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化锆晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁熵变超过金属Gd;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常Hall-Petch效应等。

1 纳米材料制备技术现状纳米粉体、纳米纤维、纳米薄膜、纳米块体、纳米复合材料和纳米结构等纳米材料的制备方法有的相同,有的不相同,有的原理上相同,但工艺上有显著的差异。

关于纳米材料的制备方法方面的文献较多,各种制备方法的工艺过程、特点及适用范围在相关的文献中均有较详细的介绍[ 1] - [ 9],限于篇幅,此处不再赘述,仅将各类纳米材料的制备方法分类归纳于表1至表6中。

表1 纳米粉体材料的制备方法气相法液相法固相法电阻加热法雾化水解法热分解法高频感应加热法共沉淀法固体反应法等离子体合成法均相沉淀法火花放电法电子束加热法无机盐水解法溶出法激光合成法金属醇盐水解法高能球磨法通电加热蒸发法喷雾干燥法表2 纳米纤维材料的制备方法纳米纤维材料类型制备方法电弧法、碳氢化合物催化分解法、等离子体法、激光法、等离子体增强热流体化学蒸气纳米碳管分解沉积法、固体酸催化裂解法、微孔模板法、液氮放电法、热解聚合物法、火焰法激光烧蚀法、激光沉积法、蒸发冷凝法、气固生长法、溶液液相固相法、选择电沉纳米棒、丝、线积法、模板法、聚合法、金属有机化合物气相外延与晶体气液固生长法相结合、溶胶凝胶与碳热还原法、纳米尺度液滴外延法电弧放电法、激光烧蚀法、气液固共晶同轴纳米电缆外延法、多孔氧化铝模板法、溶胶凝胶与碳热还原及蒸发凝聚法表3 纳米薄膜材料的制备方法制备方法实例溶胶-凝胶法纳米MgO薄膜、纳米Cu膜、纳米Fe3O4薄膜电沉积法CdS、CdSe 薄膜高速超微粒子沉积法纳米多层膜、陶瓷有机膜、颗粒膜、各种金属纳米薄膜等离子体化学气相沉积技术纳米镶嵌复合膜、多层复合膜、硅系纳米复合薄膜溅射镀膜法Si/S iO2 纳米镶嵌复合薄膜、铜高聚物纳米镶嵌膜化学气相沉积法各种氧化物、氟化物、碳化物纳米复合膜惰性气体蒸发法银钠米膜、纳米孔洞金属网络膜表4 纳米块体材料的制备方法纳米块体材料类型制备方法纳米金属与合金材料惰性气体蒸发原位加压制备法、高能球磨法结合加压成块法、非晶晶化法、高压高温固相淬火法、大塑性变形方法、塑性变形加循环相变方法、脉冲电流直接晶化法、深过冷直接晶化法纳米陶瓷无压力烧结、应力有助烧结表5 纳米复合材料的制备方法纳米复合材料类型制备方法溶胶凝胶法、高能球磨法、化学气相沉积法、溅射法、无机晶体生长法、辐射无机纳米复合材料合成法、机械融合法、非均相沉淀法、溶剂非溶剂析晶法溶胶-凝胶法、插层复合法、辐射合成有机-无机纳米复合材料法、纳米粒子直接分散法、纳米微粒原位生成法、前驱体法、LB 膜技术聚合物-聚合物溶液共混共沉淀法、电化学合成法、纳米复合材料原位聚合法、模板聚合法表6 纳米结构的制备方法纳米结构类型制备方法胶态晶体法、固态高分子膜模板法、单分子膜纳米结构自组装和模板法、简单有机分子模板法、生物分子模板分子自组装体系法、混合模板法、金属胶体自组装法、多孔纳米结构自组织合成、分子自组织合成法按人类的意志,利用各种物理和化学的方法人工纳米结构组装体系(如表1 至表5 中列出的各种方法) 人为地将纳米尺度的物质单元组装、排列构成一维、二维或三维的纳米结构体系,如纳米有序阵列体系、介孔复合体系等。

2 纳米材料的性能[ 10] - [ 12],[ 13] -[ 21]2.1 纳米材料的力学和热学性能纳米材料由于其独特的结构,因而与常规材料相比,在力学和热学上表现出一些奇异的特性。

实验表明,粒径达8nm的铁的强度为常规材料的数倍,其硬度是常规材料的近千倍。

长期以来,为解决陶瓷在常温下的易碎问题不断寻找陶瓷增韧技术,如今纳米陶瓷的出现轻而易举地解决了这个难题。

实验证明,纳米TiO2在800-1000热处理后,其断裂韧性比常规TiO2多晶和单晶都高,而其在常温下的塑性形变竟高达100%。

中科院金属研究所曾成功地将纳米铁经反复锻压,其形变高达300%。

目前各种发动机采用的材料都是金属,而人们一直期望能用性能优异的高强陶瓷取代金属,这也是未来发动机发展的方向。

而纳米陶瓷的出现为人们打开了希望之门。

纳米陶瓷的超高强度,优异的韧塑性使其取代金属用来制作机械构件成为可能。

中科院上海硅酸盐研究所制成的纳米陶瓷在800下具有良好的弹性。

纳米微粒由于颗粒小,表面原子比例高,表面能高,表面原子近邻配位不全,化学活性大,因而其烧结温度和熔点都有不同程度的下降。

常规Al2O3烧结温度在1650以上,而在一定的条件下,纳米Al2O3可在1200左右烧结。

利用纳米材料的这一特性,可以在低温下烧结一些高熔点材料,如SiC,WC,BC等。

另一方面,由于纳米微粒具有低温烧结,流动性大,烧结收缩大的特性,可以作为烧结过程的活性剂,起到加速烧结过程,降低烧结温度,缩短烧结时间的作用。

有人曾作过实验,在普通钨粉中加入0.1%-0.5%的纳米镍粉,其烧成温度从3000降到1200-1300。

复相材料由于不同相的熔点及相变温度不同而烧结困难,但纳米粒子的小尺寸效应和表面效应,不仅使各相熔点降低,各相转变温度也会降低。

在低温下就能烧结成性能良好的复相材料。

纳米固体低温烧结特性还被广泛用于电子线路衬底,低温蒸镀印刷和金属陶瓷的低温接合等。

此外,利用纳米微粒构成的海绵体状和轻烧结体可制成多种用途的器件,广泛应用于各种过滤器、活性电极材料、化学成分探测器和热变换器,例如备受人们关注的汽车尾气净化器。

有报道说,以色列科学家成功地用Al2O3制备出耐高温的保温泡沫材料,其气孔率高达94%,能承受1700的高温。

2. 2 纳米材料的光学特性纳米粒子的一个明显特征是尺寸小。

当纳米粒子的粒径与超导相干波长,玻尔半径以及电子的德布罗意波长相当、甚至更小时,其量子尺寸效应将十分显著,使得纳米材料呈现出与众不同的光学特性。

纳米材料对可见光具有反射率低、吸收率高的特性。

一般来说,大块金属都具有不同颜色的光泽。

但实验证明,金属纳米微粒几乎都呈黑色。

如铂金纳米粒子反射率仅有1%,这表明它们对可见光的低反射率、高吸收率导致粒子变黑。

由于体积效应,能级间距的增大和纳米的量子限域效应,纳米粒子对光的吸收还表现出蓝移现象。

利用纳米材料的这一特性,制成紫外吸收材料,可用作半导体器件的紫外线过滤器。

还可在稀土荧光粉中掺入纳米粉,吸收掉日光灯发射出的有害紫外线。

将其应用在纺织物中,与粘胶纤维相混合,制成的功能粘胶纤维,具有抗紫外线、抗电磁波和抗可见光的特性,可用来制做宇航服。

2. 3 纳米材料的化学活性、敏感性化学催化剂是一种不断接受热源使化学反应稳定进行的功能材料。

催化剂的作用主要有以下几个方面:一是提高反应速度和效率,缩短反应时间;二是改善反应的条件,如降低反应温度、压强、真空度等;三是在决定反应的路径方面,使化学反应按预计的方向进行,即具有选择性。

从以上不难看出,人们总是期望单位质量催化剂表面能同时接纳尽可能多的反应物,纳米微粒的表面积效应恰好符合了这一点。

而且纳米粒子表面不光滑,形成凹凸不平的原子台阶,此外原子表面悬键多,反应活性大。

这些都有利于加速化学反应,提高催化剂的反应活性。

例如采用纳米Ni 作为火箭固体燃料的催化剂,燃烧率可提高100倍。

纳米材料不仅能极大提高催化剂的催化活性,而且还表现出令人惊异的化学选择性。

相关主题