当前位置:文档之家› 尼龙的阻燃研究进展

尼龙的阻燃研究进展

尼龙的阻燃研究进展尼龙,即聚酰胺( PA) ,是主链上含有酰胺基团( - NHCO - ) 的高分子化合物,是重要的工程树脂,居五大通用工程塑料( PA ,PC ,POM,PBT/ PET ,PPO)之首,在日常生活和工业领域的应用十分广泛。

根据聚酰胺单元链节中含碳原子数目不同可分为PA6 , PA11 , PAl2 , PA46 , PA66 , PA610 , PA612 , PAl010等。

其中PA6 , PA66 应用最广泛,产量最大。

尼龙具有很高的力学强度,熔点高,耐磨,耐油和一般有机溶剂,耐热性能优良。

由于在分子结构上带有酰胺基,因此具有良好的阻燃性。

按照ASTM D635 试验,属自熄性类型。

但作为一种广泛应用的材料, 尼龙大多面临比较苛刻的使用环境,如高湿度、高温度、高电压等。

因此尼龙的阻燃性能在许多场合成为一个至关重要的因素,特别在电气用途,如接线柱、插座、开关等。

因此有必要进一步提高尼龙的阻燃性。

1.尼龙的阻燃途径:尼龙的阻燃途径主要有[1]:(1) 在复合过程中加入阻燃添加剂; 即通过机械混合方法,将阻燃剂加入到聚酰胺中,使其获得阻燃性。

如将一定配比的APP/ talc 加入PA26 中,可获得UL94 V20 级阻燃PA26 ,其优点是使用方便,适用面广,但对聚合物的使用性能有较大影响。

可用于聚酰胺的主要添加型阻燃剂有双(六氯环戊二烯) 环辛烷、多磷酸铵、十溴二苯醚等。

使用添加型阻燃剂是目前尼龙阻燃的主要方法;(2) 在聚合物链上或表面上接枝或键合阻燃基团; 即阻燃剂是作为一种反应单体参加反应,并结合到聚酰胺的主链或侧链上去,使聚酰胺本身含有阻燃成分。

其特点是稳定性好,毒性小,对材料的使用性能影响小,阻燃性持久,是一种较为理想的方法。

但操作和加工工艺复杂,在实际应用中不及添加型阻燃方法普遍。

用于聚酰胺的反应型阻燃剂有双(羟乙基) 甲基氧膦、1 ,3 ,62三(4 ,62二氨基222硫基三嗪) 己烷和三聚氰酸的混合物等;(3) 与阻燃单体(内酰胺、二元胺或二元酸) 进行共聚合作用;2.用于尼龙的阻燃剂:2.1卤系阻燃剂:卤系阻燃剂主要是在气相延缓或阻止聚合物的燃烧。

它在高温下可产生自由基终止剂卤化氢(HX) ,与聚合物燃烧链反应中活性物质反应,并降低或消除此种活性游离基,从而减缓或终止气相燃烧中的链式反应达到阻燃目的。

另一方面,HX 是难燃性气体,稀释了氧的浓度,且其相对密度大于空气在聚合物与气相间形成气体保护层。

在凝聚相中卤系阻燃剂还可通过脱水反应形成炭化状态促进成炭[2]。

适用于聚酰胺的氯化阻燃剂主要有:saytex EFR25010 双(六氯环戊二烯) 环辛烷;溴化阻燃剂主要有:十溴二苯醚(DBDPO) 、十四溴二苯氧基苯( say2 tex 120) 卤系阻燃剂对未增强和增强尼龙均很有效,它可以与协效金属氧化物、金属盐、含磷化合物或成炭剂共同使用。

如卤系阻燃剂与硼酸锌复配使用,其协同效果与氧化锑大致相当,其主要作用机理为:2ZnO·3B2O3·3. 5H2O + 22RX 2ZnX2 + 6BX3 + 11R2O + 3. 5H2O ;2ZnO·3B2O3·3. 5H2O + 22HX 2ZnX2 + 6BX3 + 14. 5H2O;反应产生的BX3 ,ZnX2 在气相中可以捕捉自由基,削弱或消除燃烧的链反应;在固相中,促进炭化层生成。

高温下,BX3 , ZnX2 在可燃物表面形成玻璃状涂层,隔绝热氧。

反应放出的水份,起到吸热、降温、消烟作用。

2.2 磷系阻燃剂:含磷阻燃剂主要在固相发生作用,受热分解发生如下变化:磷系阻燃剂→磷酸→偏磷酸→聚偏磷酸。

聚偏磷酸是不易挥发的稳定化合物,具有强脱水性,在聚合物表面形成石墨状碳化膜,使聚合物与空气隔绝;脱出的水气吸收大量的热,使聚合物表面温度下降。

在气相中,磷系阻燃剂受热分解释放出挥发性磷化物,经质谱分析表明,存在PO·游离基,同时火焰中氢原子浓度大大降低,表明PO·捕获H·,即PO·+ ·H = HPO[3]。

适用于聚酰胺的磷系阻燃剂主要有赤磷、聚磷酸铵、磷胺、磷酸三甲苯酯等。

(1)红磷:红磷的优点是有效磷含量高,在燃烧时比其它含磷化合物产生更多的磷酸。

达到相同的阻燃等级时,红磷的添加量比其它的阻燃剂更低,使尼龙能较好的保持自身的力学性能。

作为阻燃剂的红磷的主要缺点是它的红颜色、易燃和通过与水反应生成高毒性的磷化氢(膦) 。

将普通红磷进行微胶囊化可避免其缺点[4]。

(2)聚磷酸铵(APP):聚磷酸铵(APP) 通过降低聚酰胺的降解温度、改变最终气相产物的组成参与了聚酰胺的热降解过程,同时在聚合物基体上形成蜂窝状炭化覆盖层,隔断两相界面的热量和物质传递,起到了保护基体的作用[5 ]由于成炭有流动趋势,会导致炭层下面的基材暴露,增大了燃烧的危险性。

加入一些无机添加剂, 如滑石粉( Talc) ,MnO2 , ZnCO3 ,CaCO3 ,Fe2O3 ,FeO ,Al (OH) 3 等,阻燃效果增加。

在APP 添加量为20 %的尼龙6 中加入以上一种添加剂(约1. 5 %~3. 0 %) ,LOI 值从25 升至35~47 ,达到V20 级[6 ]。

2.3 氮系阻燃剂:氮系阻燃剂低毒、不腐蚀、对热和紫外线稳定、阻燃效率好且价廉。

缺点是以其阻燃的塑料加工困难,在基材中分散性较差。

适用于尼龙的氮系阻燃剂主要有MCA (三聚氰胺- 三聚氰酸盐) 、蜜胺(三聚氰胺) 、MPP(三聚氰胺磷酸盐)等。

关于其阻燃机理, 一方面是“升华吸热”的物理阻燃方式, 即通过阻燃剂的“升华吸热”降低聚合物材料的表面温度并隔绝空气而达到阻燃的目的[ 7],另一方面是凝聚相中阻燃剂与尼龙相互催化直接碳化膨胀机理。

MCA 在阻燃过程中同时表现促进碳化和发泡双重功能[8]。

对于不同的种类的尼龙其阻燃机理略有不同,其阻燃效果也有所不同。

Pieter Gijsman[9]和Shahab Jahromi[10]等分别研究了MCA和MPP在尼龙6和尼龙66中的作用机理,发现在MCA和MPP尼龙66会导致交联,而在尼龙6中则促使降解,阻燃效果尼龙66优于尼龙6。

(1)MCAMCA 是由三聚氰胺和三聚氰酸在水中合成的三聚氰胺- 三聚氰酸盐,是一种靠氢键结合的加合物。

它是一种优良的阻燃剂, 具有无卤、低毒、低烟等优点, 常用于尼龙类高分子材料的阻燃[11]。

但传统的MCA 熔点高(400 ℃以上直接分解和升华) , 只能以固相粒子形态与树脂共混复合, 因此分散不均匀, 分散相尺寸大, 影响其阻燃效果; 另外,由于MCA 主要是气相阻燃,燃烧过程中材料凝聚相成炭量较低, 炭层松散, 不能形成致密的保护层, 也限制了其阻燃效率的提高。

四川大学采用分子复合技术在三聚氰胺氰尿酸盐(MCA ) 分子中引入与其分子结构互补且自身具有阻燃性的改性剂W EX 来降低MCA 的熔点, 使之可与PA 6 共熔复合, 超细均匀分散;并利用W EX 在材料燃烧过程中的成炭性, 改善炭层质量, 增强MCA 阻燃剂的凝聚相阻燃效果, 制备出阻燃性能和力学性能优良的阻燃材料[12];岳阳石化研究院开发的尼龙用无卤阻燃剂MCA ,添加量为18 %~25 % ,阻燃性达到UL94V - 0 级[13]。

(2)IFR(膨胀阻燃剂)膨胀阻燃剂是重要的一类无卤阻燃体系.膨胀阻燃剂优于含卤阻燃剂之处在于其燃烧时烟雾小, 而且放出的气体无害。

另外, 膨胀阻燃剂生成的炭层可以吸附熔融、着火的聚合物, 防止其滴落传播火灾.研究中用于膨胀阻燃剂主要有以下几种:气源(三聚氰胺类) 、酸源(磷氮阻燃剂) 、碳源( PA 本身) 以及辅助协同阻燃剂如硼酸锌、氢氧化铝,还有防滴落剂等,有关阻燃机理[14]可用下图表示:王惠芳等[15]和Arai等[16]研究了IFR 各组分间的匹配与尼龙66阻燃性能之间的关系,发现选择合适的配比可以获得较好的阻燃性。

当磷氮阻燃剂和三聚氰胺类的质量比例小于1%时,不能达到阻燃的效果;大于30%时在加工过程中将产生挥发;在比例在1%~30%,特别是7%~20%之间时,既可获得好的阻燃效果又不影响加工过程。

2.4 无机阻燃剂:无机阻燃剂具有毒性低、热稳定性好,不产生腐蚀性气体,不析出,发烟量小,有持久的阻燃效果等优点。

但添加量大,造成聚合物的成型加工性能和物理性能下降。

适用于聚酰胺的无机阻燃剂有赤磷、聚磷酸铵、磷铵、三氧化二锑、硼酸锌、氢氧化镁、铁的各种氧化物等。

阻燃尼龙6 用的氢氧化物阻燃剂主要是氢氧化镁。

氢氧化镁340 ℃开始吸热分解,430 ℃失重最大,到490 ℃分解反应终止,得到MgO 并释出大量水。

Mg(OH)2分解时大量吸热(0. 77 kJ / g) ,降低了环境温度,同时释出的水起到稀释和屏蔽空气的作用。

降解产生的MgO 残渣强烈影响聚合物的燃烧性能,限制了热返回到底层聚合物中,并阻止了氧接近聚合物;降解产生大面积氧化表面,吸收炭灰物种,催化其氧化,从而抑制了烟的产生。

Mg(OH)2起到阻燃、抑烟的双重作用。

但需要解决分散,与基体相容性等一系列问题。

常用于改善Mg(OH)2与尼龙相容性的方法有:(1)用偶联剂对其表面进行处理;(2)研制大分子界面改性剂对其表面进行处理;(3)采用纳米技术对其表面进行处理;常素芹等[17]采用自制的大分子界面改性剂对氢氧化镁表面进行改性,发现分散性与相容性得以改善,阻燃效果良好。

2.5 其它类型的阻燃剂还有一些阻燃剂在试验中也进行了研究,其中包括:以尼龙为基质的共聚物,接枝尼龙,作为阻燃添加剂的尼龙和高成炭添加剂,如在尼龙6 ,6 中加入高成炭添加剂PVA(聚乙烯醇) ,有利于高温脱水和成炭。

但是PVA 和尼龙的相容性较差,因此用KMnO4 氧化PVA ,形成Mn 的螯合物。

用锥型量热计对加入氧化的PVA 的尼龙6 ,6 进行研究,热释放的峰值速率由1124kWm- 2降低到400 Wm- 2。

尽管尼龙本身可燃,但在一些情况下,尼龙与其它聚合物在一起可以提高聚合物的阻燃性。

在纤维中尼龙6的协效作用非常重要,聚酯中只要加入几百ppm 的磷就有阻燃作用[18 ]。

3 阻燃尼龙的发展方向随着尼龙工程塑料的应用越来越广泛,阻燃剂的筛选,阻燃技术的开发研究不断深入,阻燃尼龙向3 方面发展:(1) 低卤或非卤阻燃尼龙:含卤阻燃剂在阻燃的同时,放出大量有毒的烟和气体,危害环境及人的身体健康。

许多国家已限制或减少了含卤阻燃剂的使用,而代之以磷、氮系阻燃剂和无机阻燃剂;(2) 多种阻燃剂共同作用的复合型阻燃尼龙:在卤-锑、磷-氮等协同体系的基础上,国内外很多制造厂从事开发新的协同体系,即将多种阻燃剂复配, 达到降低阻燃剂用量,提高阻燃性能的目的。

相关主题