1.同步发电机突然三相短路时,定子绕组中将产生基频自由电流、非周期电流、倍频电流三种自由电流分量以及稳态短路电流强制分量;转子绕组除了由励磁电压产生的励磁电流这种强制分量外,还会相对应产生自由直流和基频交流两种自由电流分量。
这些电流分量的分析是以磁链守恒原则为基础的。
各种自由电流分量将随着时间逐步衰减,对于无阻尼绕组电机和有阻尼绕组电机其衰减的时间常数有所不同。
对于无阻尼绕组同步电机,定子自由电流的非周期分量按定子绕组的时间常数Ta衰减,同它有依存关系的定子电流倍频分量以及转子电流的基频分量也按照同一时间常数衰减;励磁绕组的自由直流以及同它有依存关系的定子基频电流的自由分量按照励磁绕组的时间常数Td’衰减。
对于有阻尼绕组同步电机,定子自由电流的非周期分量按定子绕组的时间常数Ta衰减,同它有依存关系的定子电流倍频分量以及转子各绕组中基频电流也按照同一时间常数衰减;定子横轴基频电流的自由分量同横轴阻尼绕组的自由直流对应,按照横轴阻尼绕组的时间常数Tq’;定子纵轴基频电流的自由分量同励磁绕组和纵轴阻尼绕组的自由直流对应,可以近似分为按不同的时间常数衰减的两个分量,其中迅速衰减的分量称为次暂态分量,时间常数为Td’’,衰减比较缓慢的分量称为暂态分量,其时间常数为Td’,且有Td’》Td’’。
在短路发生后,定子绕组中将同时衰减出现两种电流,一种是基频电流,产生一个同步旋转的磁势对定子各相绕组产生交变励磁,用以抵消转子主磁场对定子各相绕组产生的交变磁链;另一个是直流,共同产生一个在空间静止的磁势,它对各相绕组分别产生不变的磁势,这样维持定子三相绕组的磁势初值不变。
当转子旋转时,由于转子纵轴向和横轴向的磁阻不同,只有在恒定磁势上增加一个适应磁阻变化的具有二倍同步频率的交变分量,才可能得到不变的磁通。
因此,定子三相电流中,还应有两倍同步频率的电流(简称倍频电流),与直流分量共同作用,才能维持定子绕组的磁链初值不变。
突然短路后,定子电流将对转子产生强烈的纯去磁性的电枢反应。
为了抵消电枢反应的影响,维持磁链不变,励磁绕组将产生一项直流电流。
定子电流倍频分量所产生的两倍同步速的旋转磁场,也对转子绕组产生同步频率的交变磁链。
为了抵消定子直流和倍频电流产生的电枢反应,转子绕组中将出现一种同步频率的电流。
转子绕组中的这项基频电流也要反作用于定子。
d轴阻尼绕组中包含非周期自由分量和基频交流自由分量;q轴阻尼绕组中仅包含基频交流分量。
定子绕组中基频周期分量电流和d轴阻尼绕组、励磁绕组中的非周期分量相对应,并随转子励磁绕组中非周期自由分量和d轴阻尼绕组中非周期分量的衰减而最终达到稳态值(与转子励磁绕组中强制直流分量相对应);定子绕组中非周期分量和倍频分量与转子励磁绕组、阻尼绕组中的基频交流分量相对应,并随着定子绕组非周期分量和倍频分量衰减到零而衰减到零。
2.定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点。
3.当定子绕组的电阻略去不计时,定子电流向量恰位于转子d轴的负方向,并产生纯去磁性的电枢反应。
为了抵消电枢反应的影响,维持磁链不变,励磁绕组将产生一项直流电流,它的方向与原有的励磁电流相同,使励磁绕组的磁场得到加强。
这项附加的直流分量产生的磁通也有一部分要穿入定子绕组,从而激起定子基频电流的更大增长。
这就是在突然短路的暂态过程中,定子电流要大大地超过稳态短路电流的原因。
4.凸极式同步发电机原始磁链方程中,转子各绕组的自感系数、转子各绕组之间的互感系数为常数;定子绕组的自感系数,定子绕组间的互感系数、定子各绕组与转子各绕组之间的互感系数是变化的,变化的原因:一是凸极式同步发电机转子在d轴和q轴方向磁路不对称,二是定子绕组和转子绕组之间存在着相对运动。
(定子绕组的自感系数是转子位置角的周期函数,周期为π,α=90°最小值,α=180°最大值。
定子各项绕组间的互感系数也是转子位置角的周期函数,周期为π,α=150°最小值,α=60°最大值。
定子绕组与转子绕组间的互感系数随位置角变化,周期为2π,α=0°正的最大值,α=90°或270°为零,α=180°负的最大值。
由于转子的纵轴绕组和横轴绕组的轴线互相垂直,它们之间的互感系数为零。
)隐极式同步发电机原始磁链方程中,转子各绕组的自感系数、转子各绕组之间的互感系数为常数、定子绕组的自感系数,定子绕组间的互感系数均为常数;定子各绕组与转子各绕组之间的互感系数是变化的,变化的原因是定子绕组和转子绕组之间存在着相对运动。
解决方法:由于电机在转子的纵轴向和横轴向的磁导都是完全确定的,为了分析电枢磁势对转子磁场的作用,可以采用双反应理论把电枢磁势分解为纵轴分量和横轴分量,这就避免了在同步电机稳态分析中出现变参数的问题。
5.派克方程是将空间静止不动定子A、B、C三相绕组用两个随转子同步旋转的绕组和一个零轴绕组来等效替换,两个随转子同步旋转的绕组一个位于d轴方向,称为d轴等效绕组;一个位于q轴方向称为q轴等效绕组。
派克变换的目的是将原始磁链方程中的变系数变换为常数,从而使发电机的原始电压方程由变系数微分方程变换为常系数微分方程,以便于分析计算。
为什么要对同步电机原始方程进行坐标变换?变换的意义是什么?答:转子旋转时,定、转子绕组的相对位置不断变化,在凸极机中有些磁通路径的磁导也随着转子的旋转作周期性变化。
因此,同步电机磁链方程中的许多自感和互感系数也就随着转子位置而变化。
若将磁链方程带入电势方程,则电势方程将成为一组以时间的周期函数为系数的微分方程。
这类方程组的求解是颇为困难的。
变换的意义就是通过“坐标变换”,用一组新的变量代替原来的变量,将变系数微分方程变换成常系数的微分方程,然后求解。
6.发电机额定运行状态下,因励磁系统故障而失磁时,若系统无功功率充足,试分析允许发电机继续运行将对电力系统稳定性产生什么影响。
答:额定运行状态下,发电机气隙磁场由励磁绕组电流和定子三相电流共同维持,发电机失磁后,励磁绕组中电流的强制分量变为零,使得励磁绕组磁链减少,根据超导磁链守恒原则,励磁绕组中将会感应出一个自由电流分量,但总的励磁电流还是变小,从而使得E q减小,定子电流由滞后于发电机端电压的感性电流变为超前的容性电流,发电机由原来的向系统供出无功功率变为从系统吸收无功功率,造成了系统的无功缺额。
如果系统中无功功率储备充足,则继续允许该发电机运行,其吸收的无功功率可由无功备用容量补充,而该发电机还会继续向系统注入有功功率,处于异步运行状态,待励磁系统故障消除后,重新投入励磁,使它牵入同步,恢复正常运行。
因此,系统无功功率充足时,允许失磁后的发电机继续运行,能够缩短系统恢复正常运行所需的时间,有利于提高电力系统稳定性。
7.用等面积定则说明快速切除故障可以提高系统的暂态稳定性。
答:快速切除故障,除了能减轻电气设备因故障电流产生的热效应等不良影响外,对于提高电力系统的暂态稳定性还有着决定性的意义。
如图中a、b、c所示。
加快切除故障的速度,可以减小切除角δc,图中δc(a)>δc(b)>δc(c)。
从图中可以看出,减小切除角δc既可以减小加速面积(如图a、b、c中机械功率P0以下的阴影部分),又增大了最大可能的减速面积,从而提高了系统的暂态稳定性。
同步运行状态是指所有并联运行的同步电机都有相同的电角速度。
在这种情况下,表征运行状态的参数具有接近于不变的数值,通常称词情况为稳定运行状态。
电力系统同步运行的稳定性是根据受扰后系统中并联运行的同步发电机转子间的相对位移角(或发电机电势间的相角差)的变化规律来判断,又称为功角稳定性。
当发电机的电势Eq和受端电压V均为恒定时,传输功率Pe是角度δ的正弦函数。
角度δ为电势Eq与电压V之间的相位角。
因为传输功率的大小与相位角δ密切相关,所以又称δ为“功角”或“功率角”。
传输功率与功角的关系Pe=f(δ),又称“功角特性”或“功率特性”。
8.静态稳定:所谓电力系统静态稳定性,一般是指电力系统在运行中受到微小扰动后,独立地恢复到它原来的运行状态的能力。
可以用△Pe/△δ>0作为简单电力系统具有静态稳定的判据。
暂态稳定:电力系统具有暂态稳定性,一般是指电力系统在正常运行时,受到一个大的扰动后,能从原来的运行状态(平衡点)不失去同步地过渡到新的运行状态,并在新运行状态下稳定地运行(也可能经过多个大扰动后回到原来的运行状态)。
可用电力系统受到大扰动后功角随时间变化的特性作暂态稳定的判据。
9.dP/dV<0可以用作负荷节点稳态电压稳定的一种判据。
自动励磁调节器对功率的影响:提高电力系统功率极限和扩大稳定运行范围都有着良好的作用。
10.复杂电力系统功率特性特点:a.任一发电机输出的电磁功率,都与所有发电机的电势及电势间的相对角有关,因而任何一台发电机运行状态的变化,都要影响到所有其余发电机的运行状态。
b.任一台发电机的功角特性,是它与其余所有发电机的转子间相对角(共N-1个)的函数,是多变量函数,因而不能在P-δ平面上画出功角特性,同时,功率极限的概念也不明确,一般也不能确定其功率极限。
11.暂态稳定分析计算的基本假设:a.忽略发电机定子电流的非周期分量和它相对应的转子电流的周期分量。
原因:一方面,由于电子电流的非周期分量衰减时间常数很小,通常只有几十毫秒;另一方面,由于定子非周期分量电流产生的磁场在空间静止不动,它在转子上产生的转矩是周期(同步周期)变化的,平均值很小,且转子机械惯性较大,因而对转子整体相对运行影响很小。
给分析结果带的影响:采用这个假定后,发电机定、转子绕组的电流、系统电压及发电机的电磁功率等,在大扰动瞬间均可以突变,同时,这也意味着忽略电力网络中各元件的电磁暂态过程。
b.发生不对称故障时,不计零序和负序电流对转子运动的影响。
原因:对于零序电流,一方面由于联接发电机的升压变压器绝大多数采用三角形-星形接法,发电机都接在三角形侧,如果故障发生在高压网络中(大多数都是这样),则零序电流并不通过发电机;另一方面,即使发电机流通零序电流,由于定子三相绕组在空间堆成分布为零,零序电流所产生的合成气隙磁势为零,对转子运动也没有影响。
对于负序电流在气隙中产生的合成电枢反应磁场,其旋转方向与转子旋转方向相反。
它与转子绕组直流电流相互作用所产生的转矩,是以近两倍同步频率交变的转矩,其平均值接近于零,对转子运动的总趋势影响很小,加之转子机械惯性较大,所以对转子运动的瞬时速度的影响也不大。
c.忽略暂态过程中发电机的附加损耗。
这些附加损耗对转子的加速运动有一定的制动作用,但其数值不大,忽略它们使计算结果略偏保守。