当前位置:文档之家› 模拟电路总复习知识点

模拟电路总复习知识点

第一章 绪论1. 模拟信号和数字信号·模拟信号:时间连续、幅度连续的信号(图1.1.8)。

·数字信号:时间、幅度离散的信号(图1.1.10) 2.放大电路的基本知识·输入电阻i R :是从放大器输入口视入的等效交流电阻。

i R 是信号源的负载,i R 从信号源吸收信号功率。

·输出电阻o R :放大器在输出口对负载L R 而言,等效为一个新的信号源(这说明放大器向负载L R 输出功率o P ),该信号源的内阻即为输出电阻。

·放大器各种增益定义如下: 端电压增益:oV iV A V =源电压增益:o iVS V s s iV R A A V R R ==+ 电流增益:o I iI A I =互导增益:oG i I A V = 互阻增益:o I iV A I =负载开路电压增益(内电压增益):0L o V iR V A V →∞=,00LV V LR A A R R =+功率增益:0||||P V I iP A A A P == ·V A 、G A 、R A 、I A 的分贝数为20lg A ;p A 的分贝数为20lg p A 。

·不同放大器增益不同,但任何正常工作的放大器,必须1>P A 。

·任何单向化放大器都可以用模型来等效,可用模型有四种(图1.2.2)。

·频率响应及带宽:o ()()()V i V j A j V j ωωω=或()()V V A A ωϕω=∠()V A ω—— 幅频相应(图1.2.7):电压增益的模与角频率的关系。

()ϕω—— 相频相应:输出与输入电压相位差与角频率的关系。

BW —— 带宽:幅频相应的两个半功率点间的频率差H L BW f f =-。

·线性失真:电容和电感引起,包括频率失真和相位失真(图1.2.9) ·非线性失真:器件的非线性造成。

第二章 晶体二极管及应用电路一、半导体知识1.本征半导体·单质半导体材料是具有4价共价键晶体结构的硅(Si )和锗(Ge )(图2.1.2),一些金属化合物也具有半导体的性质如砷化镓GaAs 。

前者是制造半导体IC 的材料,后者是微波毫米波半导体器件和IC 的重要材料。

·本征半导体:纯净且具有完整晶体结构的半导体称为本征半导体。

·本征激发(又称热激发或产生):在一定的温度下,本征激发产生两种带电性质相反的载流子——自由电子和空穴对。

温度越高,本征激发越强。

·空穴:半导体中的一种等效q +载流子。

空穴导电的本质是价电子依次填补本征晶格中的空位,使局部显示q +电荷的空位宏观定向运动(图2.1.4)。

·复合:在一定的温度下,自由电子与空穴在热运动中相遇,使一对自由电子和空穴消失的现象。

复合是产生的相反过程,当产生等于复合时,称载流子处于平衡状态。

2.杂质半导体·在本征硅(或锗)中渗入微量5价(或3价)元素后形成N 型(或P 型)杂质半导体(P 型:图2.1.5,N 型:图2.1.6)。

·电离:在很低的温度下,N 型(P 型)半导体中的杂质会全部,产生自由电子和杂质正离子对(空穴和杂质负离子对)。

·载流子:由于杂质电离,使N 型半导体中的多子是自由电子,少子是空穴,而P 型半导体中的多子是空穴,少子是自由电子。

·在常温下,多子>>少子(图1-7)。

多子浓度几乎等于杂质浓度,与温度无关;少子浓度是温度的敏感函数。

·在相同掺杂和常温下,Si 的少子浓度远小于Ge 的少子浓度。

二、PN 结在具有完整晶格的P 型和N 型材料的物理界面附近,会形成一个特殊的薄层——PN 结(图2.2.2)。

·PN 结(又称空间电荷区):存在由N 区指向P 区的内电场和内电压;PN 结内载流子数远少于结外的中性区(称耗尽层);PN 结内的电场是阻止结外两区的多子越结扩散的(称势垒层或阻挡层)。

·单向导电特性:正偏PN 结(P 区电位高于N )时,有随正偏电压指数增大的电流;反偏PN 结(P 区电位低于N 区),在使PN 结击穿前,只有很小的反向。

即PN 结有单向导电特性(正偏导通,反偏截止)。

·反向击穿特性:当反偏电压达到一定值时,反向电流急剧增大,而PN 结两端的电压变化不大(图2.2.6)。

· PN 结的伏安方程为:/(1)T v V S i I e =-,其中,在T = 300K 时,热温度当量26mV T V 。

三、半导体二极管·普通二极管内就是一个PN 结,P 区引出正电极,N 区引出负电极(图2.3.1)。

·在低频运用时,二极的具有单向导电特性,正偏时导通,Si 管和Ge 管导通电压典型值分别是0.7V 和0.3V ;反偏时截止,但Ge 管的反向饱和电流比Si 管大得多(图2.3.2、图2.3.3)。

·低频运用时,二极管是一个非线性电阻,其交流电阻不等于其直流电阻。

二极管交流电阻:1D d D Qdi r dv -⎛⎫= ⎪⎝⎭。

二极管交流电阻d r 估算:d T D r V I ≈二极管直流电阻:DD DV R I =·二极管的低频小信号模型:就是交流电阻d r ,它反映了在工作点Q 处,二极管的微变电流与微变电压之间的关系。

·二极管的低频大信号模型:是一种开关模型,有理想开关、恒压源模型和折线模型。

三、二极管应用1.单向导电特性应用二极管正向充分导通时只有很小的交流电阻,近似于一个0.7V (Si 管)或0.3V (Ge 管)的恒压源。

·整流器:半波整流,全波整流,桥式整流 ·限幅器:顶部限幅,底部限幅,双向限幅 ·钳位电路*2.反向击穿及应用·二极管反偏电压增大到一定值时,反向电流突然增大的现象即反向击穿。

·反向击穿的原因有价电子被碰撞电离而发生的“雪崩击穿”和耗尽层中价电子强场激发而发生的“齐纳击穿”。

·反向击穿电压十分稳定,可以用来作稳压管(图2.5.2)。

·稳压管电路设计时,要正确选取限流电阻,使稳压管在一定的负载条件下正常工作。

3.特殊二极管·光电二极管、变容二极管、稳压二极管、激光二极管。

第三章 双极型晶体三极管及其放大电路一、半导体BJT 结构及偏置·双极型晶体管(BJT )分为NPN 管和PNP 管两类(图3.1.3和3.1.2)。

电流控制器件。

·当BJT 发射结正偏,集电结反偏时,称为放大偏置。

在放大偏置时,NPN 管满足C B C V V V >>;PNP 管满足C B E V V V <<。

· 放大偏置时,作为PN 结的发射结的V -I 特性是:/BE T v V E ES i I e =(NPN ),/EB T v V E ES i I e =(PNP )。

·电流分配(图3.1.4):在BJT 为放大偏置的外部条件下,发射极电流E i 将几乎转化为集电流C i ,而基极电流较小。

·电流放大系数:在放大偏置时,令CNEi i α=(CN i 是由E i 转化而来的C i 分量),导出两个关于电极电流的关系方程:C E CBO i i I α=+ 其中1αβα=-,CEO I 是集电结反向饱和电流,(1)CEO CBO I I β=+是穿透电流。

·放大偏置时,在一定电流范围内,E i 、C i 、B i 基本是线性关系,而三个电流与BE v 都是非线性指数关系。

·放大偏置时:三电极电流主要受控于BE v ,而反偏CB v ,对电流有较小的影响。

影响的规律是;集电极反偏增大时,C I ,E I 增大而B I 减小。

·发射结与集电结均反偏时BJT 为截止状态,发射结与集电结都正偏时,BJT 为饱和状态。

二、BJT 静态伏安特性曲线三端电子器件的伏安特性曲线一般是画出器件在某一种双口组态时输入口和输出口的伏安特性曲线族。

BJT 常用共射伏安特性曲线:输入特性曲线:()CEB BE V i f v ==常数(图3.1.7)输出特性曲线:()B B CE ii f v ==常数(图3.1.7)·输入特性曲线一般只画放大区,典型形状与二极管正向伏安特性相似。

·输出特性曲线族把伏安平面分为4个区(放大区、饱和区、截止区和击穿区)放大区近似的等间隔平行线,反映β近似为常数(图3.3.5)。

·当温度增加时,会导致β增加,CBO I 增加和输入特性曲线左移。

三、BJT 主要参数·电流放大系数:直流β,直流α;交流0limCEQi i α∆→∆=∆和0limCBQi i β∆→∆=∆,α、β也满足1αβα=-。

·极间反向电流:集电结反向饱和和电流CBO I ;穿透电流CEO I·极限参数:集电极最大允许功耗CM P ;基极开路时的集电结反向击穿电压()BR CEO V ;集电极最大允许电流CM I 。

·特征频率T fBJT 小信号工作,当频率增大时使信号电流c i 与b i 不同相,也不成比例。

若用相量表示为c I ,B I ,则c B I I β=称为高频β。

T f 是当高频β的模等于1时的频率。

四、BJT 小信号模型·放大作用:无论是共射组态或共基组态,其放大电压信号的物理过程都是输入信号使正偏发射结电压变化,经放大偏置BJT 内部的BE v 的正向控制过程产生较大的集电极电流变化(C i 出现信号电流c i ),c i 在集电极电阻上的交流电压就是放大的电压信号(图3.2.1)。

·小信号:当发射结上交流电压5||≤be v mV 时,BJT 的电压放大才是工程意义上的线性放大。

·BJT 混合π小信号模型是在共射组态下推导出的一种物理模型(图3.7.5),模型中有七个参数:基区体电阻b b r '—— 由厂家提供、高频管的b b r '比低频管小基区复合电阻e b r '—— 估算式:(1)(1)Tb e e EV r r I ββ'=+=+,e r ——发射结交流电阻跨导m g —— 估算300/38.5Km C T C g I V I ====(ms ),[]m e b m e b g r g r ''=β:,关系 基调效应参数ce r —— 估算C A ce I V r /≈,A V ——厄利电压c b r '——估算ce c b r r β≈' 以上参数满足:e me b ce c b r g r r r ≈>>>>>>''1高频参数:集电结电容 c b C '—— 由厂家给出; 发射结电容e b C '—— 估算cb Tme b Cfg C ''-≈π2*·最常用的BJT 模型是低频简化模型(1)电压控制电流源(c m b e i g v '=)模型(图3.7.5c )(2)电流控制电流源(c b i i β=)模型(图3.7.5d ,常用),其中e b b b be r r r ''+=五、放大电路基本概念·向放大器输入信号的信号源模型一般可以用由源电压S v 串联源内阻S R 来表示,接受被放大的信号的电路模型一般可以用负载电阻L R 来表示(图3.4.4a )。

相关主题