磁共振基本原理磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。
要理解这个问题,就必须知道核磁共振和核磁共振的特性。
一、核磁共振与核磁共振吸收的宏观描述由力学中可知,发生共振的条件有二: 一是必须满足频率条件,二是要满足位相条件。
原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。
旋转时产生一定的微弱磁场和磁矩。
将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。
重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。
不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。
进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度 B 有关。
其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率) :ω=γ·B(6-1)静磁场中的原子核自旋时形成一定的微弱势能。
当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。
这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。
显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。
图6-1表示几种原子核的共振频率与磁场强度的关系。
这些频率是在电磁波谱的频带之内,这样的频率大大低于 X 线的频率,甚至低于可见光的频率。
可见它是无能力破坏生物系统的分子的。
在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。
这个物理量叫静磁化强度矢量,用 M表示。
由大量原子核组成的系统,相当于一1 / 35下载文档可编辑大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为(6-2)如果在系统的 Z 轴方向外加一个强静磁场B。
,原子核磁矩受到外磁场的作用,在自身转动的同时又以 B。
为轴进动,核磁矩取平行于 BO 的方向。
按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有(6-3)此时可以说系统被磁化了,可见 M 是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。
图6-1几种原子核的共振频率与磁场强度的关系系统的核是大量的,位相是随意的,所以位相的分布是均匀的。
图6-2 ( a)是把系统中所有相同进动位相的核的矢量和用一箭头表示,并平移到坐标的O点,由于核进动位相分布服从统计规律,所以其各向进动的核的矢量和用相同长短的箭头表示,这就构成上下两个圆锥,图中M+表示处于低能级进动核数在 Bo方向的矢量和M-表示高能级核数在Bo反方向的矢量和,因低能级核数略多于高能级,所以 M + > M - , M + M-方向相反,所以系统出现平行于Bo的净磁化强度 Mo,用黑箭头表示,见图6-2 ( b)。
由于M +、M -的位相分布是均匀和对称的,它们在XY平面上的投影互相抵消,所以在垂直于Z轴方向上的分量,即横向分量Mxy就等于0,也就是说系统在平衡态时的核磁化强度矢量 M0就等于纵向分量Mz 。
2 / 35下载文档可编辑图 6-2 核系统核磁矩矢量和设固定坐标系统XYZ的Z轴和旋转坐标系统 X 'Y 'Z'的 Z'轴重合,X ' Y' 绕 Z 轴旋转,当在 Z轴方向施加一个静磁场 Bo,同时又引人一个旋转电磁场,它的磁矢量B1 就在 X' 轴上,角速度矢量ω的方向沿着Bo相反的方向,即ω /γ与 Bo方向相反。
当 B1在 XYZ 坐标系统中以角速度ω旋转,X 'Y' Z' 坐标也以相同的角速度ω旋转,若旋转电磁场(图 6-3)的圆频率ω等于核系统磁化强度矢量 M 的进动频率ωo,即此时静磁场Bo与ω/y 完全相互抵消,只剩下在 X'轴上的磁场B1,又叫有效磁场。
(6-4)此时 X ' Y' Z' 坐标系统中的B1;就相当于是作用在 M 上的静磁场,所以 M 又绕着 B1场进动,其进动的角速度Ω=γB1(Ω为单位时间内 M 矢量在 X ' Y' Z'坐标系统中旋转的角度),即(6-5)式中θ表示在 tp时间内 M 绕B1 转过的角度。
3 / 35下载文档可编辑图6-3 旋转磁场的运动由上可见,只要在Bo的垂直方向施加一旋转磁场B1 ,核磁化矢量M与静磁场 Bo方向的偏转角就要不断增大,见图6-4 ( a)。
增大的速度取决于B1与tp。
如果射频脉冲的持续时间和强度使M转动一个角度θ(θ角射频脉冲见图 6-4 ( b ))。
M 正好转到 XY 平面上,则称为司π/2脉冲,见图 6-5 ( b)。
图 6-4 θ角度的射频脉冲从 XYZ 坐标系统来看 M 的运动,这时M 以Ω的角速度绕石 B1进动的同时,又以ω的角速度绕Bo进动,其总的运动就呈现如图6-5 (a)的锥形转动,由 M的顶端划出一个球形的螺旋线,这是一个吸收能量的过程。
4 / 35下载文档可编辑图6-5 π/2射频脉冲二、弛像过程与自由感应衰减信号核系统在平衡状态时,其磁化强度矢量M在Bo方向的分量Mz=Mo,而在 XY平面上的横向分量Mxy=0。
如果在Bo垂直方向施加一激发脉冲,Mo就要偏离平衡位置一个角度,因而处于不平衡状态;此时Mz ≠Mo 。
Mxy≠0,当激发脉冲停止作用后,M 并不立即停止转动,而是逐渐向平衡态恢复,最后回到平衡位置,这一恢复过程称为弛豫过程,这是一个释放能量的过程。
假设分量Mz,Mxy 向平衡位置恢复的速度与它们离开平衡位置的程度成正比,于是这两个分量的时间导数可写成(6-6)(6-7)(6-8)(6-9)式中Mxy( max )为弛豫过程开始时横向磁化矢量城值。
Tl、T2是因不同的物质特性而异的时间常数。
它们也是磁共振成像的重要参数。
从式( 6-8 )和式( 6-9 )可知,恢复到平衡状态时Mz、Mxy 是同时进行的两个过程,两个特征量 T1、T2具有时间的量纲,称为弛豫时间。
由图6-6还可以看出,Mz、Mxy)的恢复服从指数规律。
1 .弛豫时间在弛豫过程中,原子核的自旋不断地与周围环境(晶格)进行着热5 / 35下载文档可编辑交换,以达到能量平衡。
这个弛豫时间称为自旋-晶格弛豫时间,即 T1。
因为这个过程是以磁化矢量在Z轴上的纵向分量逐渐恢复为标志的,所以又称为纵向弛豫时间。
图6-6 M的弛豫过程(a)自旋-晶体弛豫(b)自旋-自旋弛豫T1弛豫时间与核磁共振成像系统所采用的发射和接收频率,即拉莫尔频率有关,而拉莫尔频率与静磁场有关,因而T1弛豫时间与成像系统静磁场Bo的大小有关。
实验已证实组织中水的氢核在各种正常器官中或是正常组织与异常组织之间, T1都有很大的区别,都有一定的Tl值范围。
在弛豫过程中,自旋的原子核系统内部也在不断地进行着热交换,以达到能量平衡。
这个弛豫时间称为自旋-自旋弛豫时间,即T2。
在这个过程中,系统本身的能量不变。
但由于原子核同时受外加静磁场Bo和附近核的磁矩影响,从而其进动频率稍有不同,且均匀地分布于XY平面上,矢量和等于零。
这一过程是以垂直 Z轴上的磁化分量由大变小最终为零为标志的,所以称为横向弛豫时间。
由图 6-6(b)可见,T2定义为水平磁化矢量Mxy减少到其最大值(90度脉冲作用后的瞬时值)的37%时所需要的时间。
在理想的均匀磁场中,所有核的进动频率都应是相同的,并一致地以外磁场为轴进动。
但是由于磁场均匀性很难做得十分理想,加之组织内磁核产生的局部磁场都会对进动中的核产生影响,使各核磁矩以稍不同的频率进动。
这种共振频率的分散性导致各小磁矩具有不同的进动相位,从而引起水平磁化强度的衰减。
一般来说,T2不受施加到组织上的磁场强度的影响。
一般清况下,Bo空间不均匀性造成的Mxy减小更明显,因而实际所观察到的是T2,即6 / 35下载文档可编辑(6-10)其中△ Bo为 Bo的偏差量。
可见 Mxy在Bo不均匀的情况下衰减得更快。
以上分析表明, Tl 和T2参数反映了’H 核与周围原子间的相互作用的程度大小,因而反映了物质的结构特性― ' H 核的分布和其周围的化学环境,这是磁共振成像揭示生物体生理、生化改变的物理基础。
2 .自由感应衰减信号 F I D只要施加于受检体的射频脉冲 B1 ,存在时,核磁化矢量 M 围绕B1 ;的进动角度θ便继续增大, M 在义 XY 平面中将会产生一个分量Mxy,当射频脉冲关断以后,由于核自旋之间和核自旋与晶格之间进行能量交换,产生纵向弛豫和横向弛豫,使核自旋从射频脉冲吸收的能量又放出来。
从宏观上看,M 继续围绕Bo以ω=γBo的频率进动,但它在 XY 平面上的投影 M xy随时间越来越小,最后等于零,其运动轨迹见图6一7 。
当在 X 或 Y 轴方向设有一接收线圈,这个线圈可以是发送射频脉冲的同一线圈或单独的接收线圈,由于Mxy在线圈轴线上转动,相当于线圈内磁场方向的变化,于是在线圈两端感应出一个很小的电动势。
这个电动势就是NMR信号,叫自由感应衰减信号( free induction decay signal )。
图6-7 π/2脉冲的FID信号FID信号的强度按指数规律衰减,其衰减快慢由 T1 、T2决定,同时还与所研究区域的核自旋密度ρ有关。
FID 信号是磁共振成像系统的信号源。
3. BIoch 方程和化学位移以上从核系统的 Larrnor进动和弛豫过程说明了磁共振原理。
但7 / 35下载文档可编辑是应该强调指出,磁化强度矢量 M 在RF场作用下发生自旋翻转和弛豫是同时进行的两个过程。
只要 M 偏离Bo场方向就有弛豫过程存在,在检测线圈中测得的磁矢量变化信号是该系统 MR 信号的宏观表现。
而且RF 场 B1一经开启,自旋翻转也就存在。
为了全面说明核磁共振和弛豫过程,下面给出Bloch 方程的数学表达式。
Bloch 方程的微分形式为(6-11)其中Mx、My、Mz分别为磁化强度矢量M在 X 、Y 、Z 轴上的投影。
方程组说明了处于静磁场Bo中受到RF激励的原子核系统具有的弛豫过程的规律。
Bo场作用产生Larmor 进动,方程中的第二部分精确描述了这一特点。
RF 场作用使核系统产生共振吸收,同时产生弛豫过程。
式( 6- 11 )全面描述了核系统的状态。