车辆疲劳耐久分析1前言传统上所谓的“道路载荷”就是车辆在崎岖不平的道路上行驶,激起轮胎的连续变形。
藉着力的传导,轮胎的反弹力经由悬挂体而传播分布到车身各处。
在重覆的受力状态下,部件若在指定的驶程内产生破裂,则需重新设计。
但是,车辆工程人员迄今仍无法掌握导致部件破裂的“道路载荷”。
而在有测试的前提下,用正确的有限元方法模拟各种工况,和有创新能力的软件商一起完成“道路载荷”的获取是最省事的做法。
二十世纪初期,车辆的耐久性已是车辆设计规范之一。
汽车制造商为了要测定车辆的耐疲劳性,测试人员将各类的车辆,以不同的速度行驶于底特律的各种不同的道路上。
再根据车辆的破坏程度来修正车辆设计上的缺陷。
随着时代的演进和试车场的诞生,车辆的耐疲劳测试逐渐改在可控制的道路状况下重覆的进行测试。
由于测试的技术亦不断的进步,试车员可将耐疲劳的行驶里程由五位数减至四位数并和原先的全程测试得到的结果相仿。
为了缩短出车的时间,大家都在增进效率上努力。
二十世纪末期,复合材料模拟方法,超单元算法,橡胶单元面世,因计算机的速度突飞猛进带动了结构分析软件的技术开发。
一九八四年最好的有限元单元问世,接触面的运算方法和隐式性积分无条件收敛的算法获得验证。
先後为结构分析人员提供了在计算机上,用有限元方法模拟车辆行驶于耐疲劳道路上应力分析的工具。
以期达到减重,耐久,可以免除测试的好处。
开发成功便能取代耗时的耐疲劳行驶测试,缩短产品开发时间,这创新将是产品自主开发的利器。
有限元方法已是成熟的技术。
模拟车辆在耐疲劳道路上行驶,除了用正确有限元方法模拟不同零件的方法,祗需要掌握下文叙述的,线性,非线性,子结构分析知识和技术即可。
2结构分析和道路载荷在没有电子计算机的时代,汽车结构分析是用比较性的分析;分析人员仅能将目标车的断面,和设计车的断面,用手运算後作粗枝大叶的比较,谈不上精确度。
设计人员基本上是仰赖车辆在耐疲劳道路上的测试报告为依据。
计算机问世後,结构分析软件也应时而生。
尽管在整车分析和零件分析的精确度上有所增进,但是道路的耐疲劳载荷仍然无法获得。
在某种特殊工况下,分析人员被告知用静态载荷的三到六倍值作为分析载荷。
这导致超标准设计,也就是为甚麽八零年代以前的车较重,生产的车辆耗油量度比较高。
目前的测试器材还是无法同时获得某一点上的三方向载荷,而道路载荷若不是同时取得三方向载荷,就失去了其意义。
因受限于测试仪器功能,分析人员即使取得了轮轴的载荷,其精确度和代表性也是备受质疑。
用这些受质疑载荷计算出的车身和底盘的应力,在今日是不应该为设计工程师接受的。
但是,在二十世纪,车辆在不同的耐疲劳道路上行驶,测试的工作人员尽了最大的努力,还是无法同时取得三向道路载荷。
获取车辆在耐疲劳道路行驶的载荷,是极其耗时的工作。
其精确度更需仰赖于工作人员的专业性,加上先天性上缺陷无法同时取得三向道路载荷,这给结构分析人员带来了无限的挑战。
鉴于计算机速度越来越快,所需要的计算软件工具,先後开发成功,在计算机上模拟车辆行驶在耐疲劳道路上,并直接获得相对的应力,已是可指日可待。
3线性有限元分析应力和应变在虎克定律有效的领域是直线性变化,是弹性力学的基本假设。
有限元分析虽有近五十年的历史,但在七十年代末期才在汽车公司发挥其效用。
八十年代,福特汽车公司车身集团提倡以结构分析领导设计後,线性有限元分析遂被广泛的应用在弹性力学范围内的设计工况。
线性有限元分析是众所周知的技术,简便可靠。
祗要有限元模型和实物是一致,有限元模型的网格适当,材料性质,载荷和约束点的模拟正确,有限元分析的结果是不会因分析者或是不同软件而产生差异。
目前,整车的模态分析,强度分析,在高速的计算机运作下,分析人员在一顿饭间便可得悉车辆设计是否合乎设计规范要求,分析和设计效率为空前之高。
4非线性有限元分析非线性力学,简单的说就是(1)应力和应变不全是直线关系,应力可大于应力的屈服点的状况,是谓材料非线性[MaterialNonlinearity] ;或是(2)载荷和位移不全是直线关系时,有如,结构受力後形状骤变的效应,结构的大变形,是谓几何学的非线性[GeometricNonlinearity] 。
又如(3)结构受力,钣金接触後不被允许互相穿越;这都是属于非线性力学领域。
汽车结构问题在工况上多半是属于非线性力学范围。
以车辆耐疲劳工况模拟为例;当车辆经过凹坑,底盘部件冲击车身,遂产生了接触现象。
若车身因此而发生大变形,车身应力亦可能超过应力的屈服点。
又如,车辆碰撞,车门挤压,安全带拖曳脱离地板,车顶压溃等现象,这都是属于非线性力学的物理现象。
非线性有限元分析,数字的解决方案通常可分为静态和动态,其解法则分为显式时间积分[EXP LI CIT TIME INTEGRATION和隐式时间积分[IMPLICIT TIME INTEGRATION]两种。
当一个直接计算棣属变数,被成为已知量项,这算法是为显式时间积分。
相反的,当棣属变数是限定为一系列结合(联立)方程式,而必需用解矩阵或反覆迭代的技术求解,这数字的方法是谓隐式时间积分。
当时间步骤dt加大,数值的稳定性是和答案表现有关。
如果时间步骤dt随意地加大,而答案表现无异样,这方法是为无条件的稳定。
用显式时间积分方法这种结局绝对不会发生,显式时间积分方法总是有条件的稳定。
隐式时间积分迭代方法最适合求恒稳的结果。
显式时间积分方法对瞬变的压力波求解最为适合。
显式时间积分方法一定要在每一个时间步骤,用某时间步骤大小限定着压力步骤要小于一个计算单元。
不管怎样,这个约束式和精确度有关,因为大部分差别方程式他们的量值和邻近的单元格有关。
某一压力波在每一个时间步骤传送超过一单元格,它将被移到和压力无关的区域。
不但在物理上是不实际,它也导致数值的不稳定。
另一方面,隐式时间积分方法以迭代方法结合所有的单元格,允许压力信息由节点传送。
显式时间积分方法的解法,是不需要解矩阵,它很容易的计算第二轮时间步骤。
题目的计算时间是和节点的多寡成正比,它最适合于处理高速度的动态工程题目。
理论上它在某特定的状况下,它的时间步骤是非常小,其结果也是稳定的。
所以它的结果应屡以鉴定以保证其稳定性也就是保证其精确度。
由于显式时间积分方法的解法简单,而且永远是有结果,即使输入数据违反物理现象的情况下,它还是有解。
这就是为甚麽显式时间积分方法的解法频被滥用于它不该应用于解决的工程题目的原因。
但用户若能记住在汽车结构问题中显式时间积分的解法是专为高速度而持续期是极短的工程问题所开发的最有效解决方法,显式时间积分的解法就不会被滥用。
最明确的例子就是车辆碰撞问题,它的全部过程是一百二十毫秒,用显式时间积分的解法是最适合的。
隐式时间积分解法,不像显式时间积分的解法祗适合于高速度的爆破和碰撞工程问题,隐式时间积分解法,它是可用以处理所有的工程问题。
在车辆结构力学工况中,钣金成型的冲压题目是可以作为应用显式时间积分和隐式时间积分解法的分界点;如果速度等于或是低于钣金成型的冲压速度就是应该用隐式时间积分解法;当持续期以秒计时也应用隐式时间积分解法。
由于隐式时间积分解法是要解矩阵-联立方程式,题目的计算时间是和矩阵带宽平方成正比,当然在效益上用它来处理碰撞问题是较显式时间积分的解法费时。
理论上隐式时间积分解法是会遭遇到收敛的困难,但若收敛其结果是绝对可靠。
美国联邦的汽车安全法规规定,像安全带拖曳需在四十五秒内以近乎静态速度完成,车顶压溃规定在九十秒内完成一百二十五毫米的压缩位移,而在二零零零年前,有限元分析是无法模拟这低速度的大变形工况。
为了要达到“结构分析领导设计”,车辆的结构分析必须能在概念车的阶段就应予以优化,开发低速度无条件收敛的隐式时间积分解法是必要的。
鉴于此,ADINA在福特汽车公司招标的结果脱颖而出完成这功能。
这功能是包括用全积分绝对收敛的MITC4壳单元,钣金绝对不允许互相穿透的接触面算法。
这是力学界的首创。
一九九九年笔者先後完成了ADINA开发低速度无条件收敛的隐式时间积分解法用于,安全带拖曳,和车顶压溃的验证工作。
至此,汽车设计人员才可以做到以结构分析来领导设计。
有了低速度无条件收敛的隐式时间积分解法,结构分析人员现在可以用同一软件,优化车辆安全,噪音和强度的结构设计,推行计算机辅助工程统一化。
因它带动的技术和方法也可以用来完成发动机包括有结合垫料的不同热传导分析,耗时六秒的翻车模拟,以及取代车辆行驶在耐疲劳道路上的耐疲劳道路试验。
非线性有限元分析中单元的特性是耐疲劳分析必备的,后文将论及。
5车辆耐疲劳试验模拟要缩短模拟时间,要缩短测试时间,在不同的工况下,预测其失败时限,就应有耐久设计目标。
用有限元方法完成耐疲劳分析,就必须先要决定有限元模型最合适的网格的大小,然後就要获得车辆耐疲劳试验的载荷来完成分析。
最精确,最快,最简单,最省时间,最省钱的做法,就是使用结构分析软件,用有限元方法模拟,将车辆行驶在耐疲劳试验的道路上,无需经过载荷的合成,直接算出其应力。
诸如下列车辆的不同强度测试也可予以正确的模拟计算。
1. 垂向冲击强度2. 左前轮冲击强度3. 左后轮冲击强度4. 制动加速度5. 转弯向心加速度6. 最大加速工况7. 前轮100km/hr紧急制动工况车辆行驶在耐疲劳试验的道路上,其试验的里程是以万计,其持续期是以月计。
鉴于整车有限元模型的单元数目皆为六位数才能获得分析所需的精确度,同时要在计算机上完成整车耐疲劳试验是需要用多功能软件。
因为整车有限元模型相当的庞大,有车身和底盘部件接触,轮胎接触路面,衬套接触底盘部件等工况,这软件就必需要有子结构分析,好的全积分单元,好的接触单元,正确的接触面算法,好的橡胶单元,好的复合材料数据库,并具备显式时间积分和隐式时间积分两种解法。
车辆经过凹坑时,由于重力的惯性车身往下堕,当车轮碰到坑底时产生颠簸和反弹,以及车身地板碰撞接触到底盘的现象,或是产生的应力超越应力屈服点,所发生的部位就必需以非线性分析计算,它祗是整车的一部份;这是将载荷加在主轴上无法可以模拟获得的现象,因为当车轮碰到坑底时,惯性会使车身继续往下堕,该时车身向下的位移是随车身的刚度而异,同时底盘有些部位早已停止下堕已和车身接触在开始反弹。
假设柔体车身是基本上与事实相符的正确做法。
衬套在悬挂体中是重要的零件,它有阻尼性能,加上悬挂体和车身的接触是由于轮胎冲击路面所造成,这都是属于非线性力学的工程项目,而这些橡胶部件则都是划分于非线性子结构中。
有限元单元的整车耐疲劳分析和整车模态分析时必需要有代表性的衬套才能有正确的结果,在模拟衬套时必须要有测试的数据。
用有限元方法模拟的车辆,在所有有限元方法模拟的不同耐疲劳试验道路上跑过後,分析人员便可根据分析结果判断试车场最具破坏性的道路,以後就没有必要再将模拟的车辆行驶在所有耐疲劳试验的道路上。