当前位置:文档之家› 外啮合齿轮泵的设计讲解

外啮合齿轮泵的设计讲解

编号:毕业论文(设计)题目外啮合齿轮泵的设计指导教师孙秀云学生姓名吴连增学号************专业机械设计制造及其自动化教学单位德州学院机电工程学院(盖章)二O一四年四月二十日德州学院毕业论文(设计)开题报告书德州学院毕业论文(设计)中期检查表院(系):机电工程学院专业:机械设计制造及其自动化2014年03月20日目录摘要及关键词 (1)1引言 (1)1.1简介 (1)1.2齿轮泵的工作原理 (1)1.3齿轮泵结构分析 (2)1.4齿轮泵的流量计算 (4)2齿轮油泵各组成零件的选材分析 (4)2.1材料的选择原则 (5)2.2材料的选择方法 (5)3产品重要零件AutoCAD绘图 (7)3.1绘制主动齿轮零件图 (7)3.2表面粗糙度的选定 (9)3.3公差与配合的选择 (9)3.4零件的热处理 (11)4齿轮泵零件图 (12)5总结 (13)参考文献 (14)谢辞 (15)外啮合齿轮泵的设计吴连增(德州学院机电工程学院,山东德州253000)摘要:外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,在工业中应用十分广泛,且都存在漏油现象。

在对该泵基本参数的研究上,对齿轮、泵体和前后盖进行优化设计,使之达到最佳效果。

困油现象会引起齿轮泵强烈的震动和噪声,大大缩减了外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。

关键词:外啮合;齿轮;泵体;困油现象1引言1.1简介齿轮泵是在工业应用中运用极其广泛的重要装置之一,尤其是在液压传动与控制技术中占有很大的比重,它具有结构简单、体积小、重量轻、自吸性能好、耐污染、使用可靠、寿命较长、制造容易、维修方便、价格便宜等特点,但同时齿轮泵也还存在一些不足,如困油现象比较严重、流量和压力脉动较大、径向力不平衡、泄漏大、噪声高及易产生气穴等缺点,这些特性和缺点都直接影响着齿轮泵的质量。

随着齿轮泵在高温、高压、大排量、低流量脉动、低噪音等方面发展及应用,对齿轮泵的特性研究及提高齿轮泵的安全和效率已成为国内外深入研究的课题。

近年来,随着产量的不断增长,在齿轮泵向高压化、高可靠性发展的推动下,我国齿轮泵有了新的发展和突破。

而齿轮泵泵体制造工艺设计合理与否将直接影响到齿轮泵的工作效率,制定合理的加工工艺相当重要。

我在此基础上进行了外啮合齿轮泵的结构设计,通过建立数学模型,优化计算出流量脉动最小的齿轮参数。

这对于促进机械装备的技术进步、降低机械装备的制造成本具有十分重要的意义,其应用前景十分广阔。

1.2齿轮泵的工作原理这种泵的壳体内装有一对外啮合齿轮,由于齿轮端面与壳体和端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。

啮合的主、从动齿轮与两端盖及泵体一起构成密封工作容积,齿轮的啮合点将两腔隔开,形成了吸、压油腔,吸油腔内的轮齿脱离啮合,密封工作腔容积不断增大,形成部分真空,油液在大气作用下从油箱经吸油管进入吸油腔,并被旋转的轮齿带入压油腔,压油腔内的轮齿不断进入啮合,使密封工作腔容积减小,油液受到挤压被排往系统,这就是齿轮泵的吸油和压油过程。

当齿轮按图1方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。

因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔[1]。

随着齿轮的转动,每个齿间中的油液从右侧被带到了左侧。

在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油液从压油口挤压输出的容腔称为压油腔。

当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。

在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。

齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,齿轮泵的另一个齿轮(从动轮)装在另一个轴上,齿轮泵的齿轮旋转时,液体沿吸油管进入到吸入空间,沿上下壳壁被两个齿轮分别挤压到排出空间汇合(齿与齿啮合前),然后进入压油管排出。

图1外啮合齿轮泵的工作原理图1.3齿轮泵结构分析1.3.1困油现象齿轮泵要平稳的工作,齿轮啮合的重合度必须大于1,即有两对同时啮合的时刻,因此,就会有一部分油液困在两对齿轮所形成的封闭容积之内,如图2所示。

这个封闭容积先随齿轮转动逐渐减小,然后又逐渐增大。

密封容积减小,会使被困油液受挤压而产生高压,并从缝隙中流出,导致油液发热,轴承等机件也受到附加的不平衡负载作用;封闭容积的增大又会造成局部真空,使溶于油液中的气体分离出来,产生气穴,这就是齿轮泵的困油现象[2]。

困油现象的危害:使齿轮泵产生强烈的噪声并引起震动和气蚀,降低泵的容积效率,影响工作的平稳性,缩短使用寿命。

图2齿轮泵的困油现象消除困油的方法,通常是在两端盖板上开卸荷槽,两卸荷槽之间的距离为:a=α2=πcosαcospmb开设卸荷槽如图3,可使闭死容积限制为最小。

即当封闭容积减小时,通过右边的卸荷槽与压油腔相通。

而封闭容积增大时,通过左侧的卸荷槽与吸油腔相通,两卸荷槽之间的距离确保在任何时候都不使吸、排油相通。

图3齿轮泵的困油卸荷槽图1.3.2径向不平衡力齿轮泵工作时,在齿轮和轴承上承受径向液压力的作用。

如图所示,泵的右侧为吸油腔,左侧为压油腔。

在压油腔内有液压力作用于齿轮上,沿着齿顶的泄漏油,具有大小不等的压力,就是齿轮和轴承受到的径向不平衡力。

液压力越高,这个不平衡力就越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,甚至使轴变形。

CBD 齿轮泵采用缩小压油腔,以减少压力对齿顶部分的作用面积来减小径向不平衡力,所以泵的压油口孔径比吸油口孔径要小[3]。

1.4齿轮泵的流量计算外啮合齿轮泵的排量可近似看作是两个啮合齿轮的齿槽容积之和。

若假设齿槽容积等于轮齿体积,则当齿轮齿数为z 、模数为m 、节圆直径为d (其值等于m*z )、有效齿高为h (其值等于2m )、齿宽为b 时齿轮泵的排量近似值为:V= b m 2dhb 2ππ= (1) 实际上,齿槽容积比轮齿体积稍大一些,并且齿数越小差值越大,因此需要用(2)来代替式(1)中的 值(齿数少时,取大值),以补偿误差[4]。

齿轮泵的排量为:V=(6.66~7)b zm 2 (2)由此得齿轮泵的输出流量为:q=(6.66~7)v 2bn zm η实际上,由于齿轮泵在工作过程中啮合点沿啮合线移动,使其工作油腔的容积变化率是不均匀的。

因此,齿轮泵的瞬时流量是脉动的。

流量脉动会直接影响到系统工作的平稳性,引起压力脉动,是管路系统产生振动和噪声。

如果脉动频率与系统的固有频率一致,还将引起共振,加剧振动和噪声。

若用q 和q 表示最大、最小瞬时流量,q 表示平均流量, 则流量脉动率σ可用下式表示:q q -q minmax =σσ是衡量容积式泵流量品质的一个重要指标。

在容积式泵中,齿轮泵的流量脉动最大,并且齿数愈小,脉动率愈大。

这是外啮合齿轮泵的一个缺点。

所以,齿轮泵一般用于对工作平稳性要求不高的场合,要求平稳性高的高精度机械不宜采用齿轮泵。

2齿轮油泵各组成零件的选材分析2.1材料的选择原则2.1.1材料的力学性能材料性能应满足零件的工作需求,尽量使零件经久耐用,安全可靠。

为此,必须根据零件的功用、受力状况、工作环境等,分析零件失效的形式与原因来确定材料抵抗失效应力具备的重要性能,根据主要性能来选择材料。

2.1.2材料的工艺性材料工艺性指的的是零件在制作过程中,材料适应冷、热加工工的性能包括:铸造性--锻造性--焊接性--切削加工性--热处理[5]工艺性。

2.1.3材料的经济性在满足使用性能要求的前提下,应尽量采用便宜的材料,把零件的总成本降低到最低,以获得最大的经济利益。

2.2材料的选择方法2.2.1以综合力学性能为主时的选材在机器制造业中,相当的机械零件,如轴类,杆类。

工作时受到不同程度的载荷和工作环境的制约,要求零件具有较高的强度和良好的塑性。

因此根据零件的受力情况的大小,选用中碳钢或者合金钢材料(如45号钢、40Cr钢等),并进行正火或者调质处理满足使用需求。

零件受力越大,零件选用的材料的综合力学性能也应越高。

2.2.2以疲劳强度为主时的选材交变载荷作用下的零件容易出现疲劳破坏,同时应力集中也是导致零件疲劳破坏的重要零件,如发动机的曲轴、轴承、齿轮等零件,应选用疲劳强度高的材料制作,并合理设计结构形状,制定正确的加工工艺来减少应力集中。

2.2.3以磨损为主时的选材在工作条件下,磨损较大,受力小的零件,如各种量具,钻套等,选用高碳钢或者高碳合金钢,进行淬火,低温回火来获得高硬度的回火马氏体组织,满足耐磨需求,同时承受磨损和交变应力的零件,应选合适表面淬火、渗碳或者氮化后的钢材进行热处理。

表1钢材料分类名称牌号应用举例说明Q215A B 金属结构件、拉杆、套圈、铆钉、短轴、心轴、凸轮、垫圈,渗碳零件及焊接件等。

“Q”为碳素结构钢屈服点“屈”字的首位拼音字数,后面的数字表示屈服点数值,如Q235A表示碳素结构钢屈服点为Q235A B 金属结构件,心部强度要求不高的渗碳零件,吊钩、拉杆、套圈、汽缸、齿轮、螺栓、螺母、连碳素结构钢 CD 杆、轮轴、偰、盖及焊接件。

235Mpa。

屈服点是表征材料受力后改变与未改变原有力学性能的临界点。

Q275 轴、刹车杆、螺栓、螺母、连杆、齿轮以及其他强度较高的零件。

优质碳素结构钢08F1020303540455060可塑性好的零件,如管子、垫片、渗碳件、、拉杆、卡头、紧固件、冲模锻件、轴套、钩、螺钉、连接器、连杆、横梁、摇杆、键、销、螺栓齿轮、齿条、凸轮、曲柄轴齿轮、联轴器、衬套、轮轴、偏心轮、轮圈、弹簧等。

牌号中的两位数字表示平均含碳量,45号钢即表示平均含碳量为0.45%,平均含碳量≤0.25%的为低碳钢;平均含碳量在0.25%~0.6%之间的为中碳钢;含碳量质量分数大于0.6%的为高碳钢;在牌号后面加符号“F”表示沸腾钢。

30Mn40Mn50Mn螺栓、杠杆、制动板、用于承受疲劳载荷零件:轴、曲轴、万向联轴器、用于高负荷下耐磨的热处理零件,如齿轮、发条等。

锰的质量分数较高的钢,须加注化学元素符号“Mn”。

合金结构钢铬钢15Cr20 Cr30 Cr40 Cr渗碳齿轮、凸轮、活塞销、离合器、较重要的渗碳零件的重要的调质零件(如轮轴、齿轮、螺栓)较重要的调质零件(如齿轮、进气阀、轴、)强度及耐磨性高的轴、齿轮、螺栓等。

钢中加入了一定的合金元素,提高了钢的力学性能和耐磨性,也提高了钢在热处理时的淬透性,保证金属能在较大截面上获得良好的力学性能。

相关主题