鲍林电负性
1定义
电负性综合考虑了电离能和电子亲合能,首先由莱纳斯·鲍林于1932年提出。
它以一组数值的相对大小表示元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。
元素电负性数值越大,原子在形成化学键时对成键电子的吸引力越强。
2计算方法
电负性的计算方法有多种,每一种方法的电负性数值都不同,比较有代表性的有3种:
① .鲍林提出的标度。
根据热化学数据和分子的键能,指定氟的电负性为,计算其他元素的相对电负性。
②.密立根从电离势和电子亲合能计算的绝对电负性。
③.阿莱提出的建立在核和成键原子的电子静电作用基础上的电负性。
利用电负性值时,必须是同一套数值进行比较。
同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。
过渡元素的电负性值无明显规律。
就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,氟的电负性值数大();周期表左下方的金属元素电负性值都较小,铯和钫是电负性最小的元素()。
一般说来,非金属元素的电负性大于,金属元素电负性小于。
电负性概念还可以用来判断化合物中元素的正负化合价和化学键的类型。
电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价。
在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强。
当化学键两端元素的电负性相差很大时(例如大于)所形成的键则以离子性为主。
3常见元素电负性鲍林标度
鲍林指定氟的电负性为,并以此为标准确定其他元素的电负性。
氢锂铍硼碳氮氧氟
钠镁铝硅磷硫氯
钾钙锰铁镍铜锌镓锗砷硒溴
铷锶银碘钡金铅
一般来说,电负性大于的是非金属元素,而小于等于的往往是金属元素(当然,其中也存在例外)
电负性对应氧化性
特殊元素
O的电负性比N的大呀,N的第一电离需要破坏2P半充满的低能状态,O的第一电离形成了 2P半充满的低能状态,所以N的第一电离能比O的大,O的非金属性比N强,所以O的电负性比N的大
4在周期表内的递变规律
1.随着原子序号的递增,元素的电负性呈现周期性变化。
2.同一周期,从左到右元素电负性递增,同一主族,自上而下元素电负性递减。
对副族而言,同族元素的电负性也大体呈现这种变化趋势。
因此,电负性大得元素集中在元素周期表的右上角,电负性小的元素集中在左下角。
3.非金属元素的电负性越大,非金属元素越活泼,金属元素的电负性越小,金属元素越活泼。
氟的电负性最大,是最活泼的非金属元素;钫是电负性最小的元素,是最活泼的金属元素。
4.过渡元素的电负性值无明显规律
(1)判断元素的金属性和非金属性。
一般认为,电负性大于的是非金属元素,小于的是金属元素,在左右的元素既有金属性又有非金属性。
(2)判断化合物中元素化合价的正负。
电负性数值小的元素在化合物吸引电子的能力弱,元素的化合价为正值;电负性大的元素在化合物中吸引电子的能力强,元素的化合价为负值。
(3)判断分子的极性和键型。
电负性相同的非金属元素化合形成化合物时,形成非极性共价键,其分子都是非极性分子;电负性差值小于的两种元素的原子之间形成极性共价键,相应的化合物是共价化合物;电负性差值大于的两种元素化合时,形成离子键,相应的化合物为离子化合物。
5应用
(1)判断元素的金属性和非金属性。
一般认为,电负性大于的是非金属元素,小于的是金属元素,在左右的元素既有金属性又有非金属性。
(2)判断化合物中元素化合价的正负。
电负性数值小的元素在化合物吸引电子的能力弱,元素的化合价为正值;电负性大的元素在化合物中吸引电子的能力强,元素的化合价为负值。
(3)判断分子的极性和键型。
电负性相同的非金属元素化合形成化合物时,形成非极性共价键,其分子都是非极性分子;电负性差值小于的两种元素的原子之间形成极性共价键,相应的化合物是共价化合物;电负性差值大于的两种元素化合时,形成离子键,相应的化合物为离子化合物。