当前位置:文档之家› 10数论问题的常用方法(教师版)

10数论问题的常用方法(教师版)

数论问题的常用方法数论是研究数的性质的一门科学,它与中学数学教育有密切的联系。

数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一。

下面介绍数论试题的常用方法.1.基本原理为了使用方便,我们将数论中的一些概念和结论摘录如下:我们用),...,,(21n a a a 表示n 个整数1a ,2a ,…,n a 的最大公约数。

用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的最小公倍数。

对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分。

对于整数b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡。

对于正整数m ,用)(m ϕ表示{1,2,…,m }中与m 互质的整数的个数,并称)(m ϕ为欧拉函数。

对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ϕ中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ϕ}为模m 的简化剩余系。

定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=.定理2 (1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(mod 21m x x =,则11ni i i a x =∑≡21ni ii b x=∑;(2)若)(mod m b a ≡,),(b a d =,m d |,则)(mod dm d b d a ≡; (3)若)(mod m b a ≡,),(b a d =,且1),(=m d ,则)(mod m dbd a ≡;(4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3 (1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+;(3)设p 为素数,则在!n 质因数分解中,p 的指数为∑≥1k kp n.定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模m 的完全剩余系;(2)若{)(21,...,,m r r r ϕ}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ϕ}是模m 的简化剩余系.定理5(1)若1),(=n m ,则)()()(n m mn ϕϕϕ=.(2) 若n 的标准分解式为k k p p p n ααα (2)121=,其中k ααα,...,21为正整数,k p p p , (21)互不相同的素数,则)11)...(11)(11()(21kp p p n n ---=ϕ. 对于以上结论的证明,有兴趣的读者可查阅初等数论教材.2 方法解读对于数论试题,除直接运用数论的基本原理外,常用的基本方法还有因式(因数)分解法,配对法,分组法,估值法,同余方法,构造法,调整法,数学归纳法与反证法.下面分别予以说明2.1基本原理的应用例1 设正整数a ,b ,c 的最大公约数为1,并且c ba ab=-(1) 证明:)(b a -是一个完全平方数.证 设d b a =),(,d a a 1=,d b b 1=,其中1),(11=b a .由于1),,(=c b a ,故有1),(=c d .由(1)得c b c ad b a 1111-=(2)由(2)知,c b a 11|,又1),(11=b a ,∴ c a |1.同理可证c b |1,从而有c b a |11,设k b a c 11=,k 为正整数,代入(2)得)(11b a k d -= (3)由(3)知d k |,又c k |,∴1),(|=c d k ,∴1=k . ∴11b a d -=.∴211)(d b a d b a =-=-. 故)(b a -是一个完全平方数.例2 设n 为大于1的奇数,1k ,2k ,…,n k 为给定的n 个整数.对于{n ,...,2,1}的任一排列12(,,...,)n P a a a =,记1()ni i i s P k a ==∑,试证存在{n ,...,2,1}的两个不同的排列B 、C ,使得)()(!|C s B s n -.证 假设对于任意两个不同的排列B 、C ,均有!n 不整除)()(C S B s -.令X 为{n ,...,2,1}的所有排列构成的集合,则{()|s P P X ∈}为模!n 的一个完全剩余系,从而有!1(1!)!()(mod !)2n P Xi n n s P i n ∈=+≡=∑∑ (1) 又 1()()ni i P X P X i s P k a ∈∈==∑∑∑=∑=+ni i k n n 12)1(! (2) 而n 为大于1的奇数,所以由(1),(2)得)!(m o d 02)1(!2!)!1(1n k n n n n n i i ≡+≡+∑=. 又1)!,!1(=+n n ,所以)!(mod 02!n n ≡,矛盾. 这个矛盾表明必存在B 、C X ∈,B ≠C ,使得)()(!|C s B s n -.2.2 因式(数)分解数论中许多问题直接与因式(数)分解相关联,如合数问题,整除问题等常常是要证明某种分解式的存在.数的标准分解式本身就是一种特定形式的因数分解.在不定方程的求解与一些代数式的求值中,因式(数)分解能帮助我们确定某些变量的取值范围,寻找到解题的方法.例2 求三个素数,使得它们的积为和的5倍.解 采用分析中的记号,易知a ,b ,c 中必有一个为5,不妨设5c =,则有 5++=b a ab , 从而有6)1)(1(=--b a .因为1-a 与1-b 均为正整数,不妨设b a <,则有⎩⎨⎧=-=-6111b a 或 ⎩⎨⎧=-=-3121b a , 从而知2=a ,7=b .故所求的三个素数为2,5,7.2.3配对例4 设k 为正奇数,证明:n ++++...321整除kkkn +++...21. 分析 因为2)1(...321+=++++n n n .故需证)...21(2|)1(k k k n n n ++++,注意到当k 为奇数时,k k y x +可因式分解,因此可将)...21(2k k k n +++中的n 2个数两两配对. 证 )...21(2k k k n +++=k k k k k k k n n n n 2]1)1[(...])2(2[])1(1[++-++-++-+,而当k 为奇数时,k k b a b a ++|,从而知()k k k n n +++...212| (1) 又 ()k k k n +++...212=]1[...])1(2[]1[k k k k k k n n n +++-+++, ∴)...21(2|)1(k k k n n ++++ (2) 由(1)(2)知,)...21(2|)1(k k k n n n ++++,故结论成立.2.4 分组例5 (1990年高中联赛试题)设}200,...,2,1{=E ,},...,,{10021a a a G =E ⊆,且G 具有下列性质:(1) 对任何1001≤<≤j i ,201≠+j i a a ; (2)100801001=∑=i ia.试证:G 中的奇数的个数是4的倍数,且G 中所有数的平方和是一定数.证 对于1001≤≤i ,令12-=i i α,i i αβ-=201.},{i i i E βα=,则G 中恰含i E 中的一个元素.设G 中有k 个奇数1i α,2i α,…,k i α,有s 个偶数sj j j βββ,...,,21,这里},...,,,,...,,{2121s k j j j i i i =}100,...,2,1{.由题设知, 10080=∑∑∑∑====+-=+sr j kt i sr j kt i r t rt1111)201(βββα=∑∑==-kt i kt t 112201β+⎪⎭⎫⎝⎛+∑∑==k t sr j i r t 11ββ =-k 2012∑=kt i t1β+)200...642(++++=1010022011+-∑=kt i tk β.∴ (1)由于t i β为偶数,所以∑=kt i t12|4β,又20|4,所以k 201|4,∴k |4,即k 是4的倍数.∑∑∑===+=sr j k t i i irta121210012βα=∑∑==+-sr j kt i rt1212)201(ββ=∑∑==⨯-kt i kt t1122012201β+)(1212∑∑==+sr j kt i rtββ=∑=⨯-kt i t k 122012201β+)200...642(2222++++=)2201(2011∑=-kt i tk β+6)1200)(1100(1004++⨯(2)将(1)代入(2)得62011011004)20(20110012⨯⨯⨯+-⨯=∑=i i a =1349380.2.5估值例6 令n a 表示前n 个质数之和,即21=a ,5322=+=a ,105323=++=a ,…,证明:对任意的正整数n ,区间[1,+n n a a ]中包含有一个完全平方数.分析 设质数从小到大依次为12,,...,k p p p …,要结论成立,只要存在正整数m ,使得12+≤≤n n a m a , 只要 1+≤≤n n a m a , 只要11≥-+n n a a ,只要 n n n a a a 211+≥-+, 只要 n n a p 211+≥+ 只要 (1)1201220t ki t k β=-=-∑2112(1)44(...)n n k p a p p p +-≥=+++证 直接验证易知[2,1,a a ],[32,a a ],[43,a a ],[54,a a ]中都含有1个完全平方数.当5≥n 时,我们证明(1)式成立.为此,令2112(1)(1)4(...)n k f n p p p p ++=--+++, 则n n n p p p n f n f 4)1()1()()1(221----=-++=n n n n n p p p p p 4)2)((11--+-++. 因为当2≥n 时,n p 为奇数,所以21≥-+n n p p ,1(1)()2(22)n n n f n f n p p p ++-≥+--=)2(21--+n n p p 0≥, 故当2≥n 时,数列)(n f 为递增数列.由于)(4)1()5(432125p p p p p f +++--==)7532(4)111(2+++--=32>0 所以当5≥n 时,0)5()(>≥f n f .故当5≥n 时(1)式成立.例7 求出不定方程1)!1(-=-k n n (1)的全部正整数解.解 当2=n 时,易得1=k ;当2>n 时,(1)式左边为偶数,故右边也是偶数,所以n 为奇数.当3=n 时,由13!2-=k ,得1=k .当5=n 时,由 15!4-=k, 得2=k .当5>n 且为奇数时,321-<-n n ,221≠-n ,故)!2(|212--⋅n n ,即)!2(|)1(--n n ,因此2(1)|(1)!n n --,所以)1(|)1(2--k n n .另一方面,由二项式定理知1)1)1((1-+-=-k k n n =A (2)1-n +)1(-n k .其中A 为整数,所以)1(|)1(2--n k n ,故k n |)1(-, 因此1-≥n k ,从而有 )!1(111->-≥--n nn n k.这说明当5>n 时,方程(1)无解,故方程(1)的解为)1,2(),(=k n ,)1,3(,)2,5(2.6同余例8 证明991993991993+能被1984整除.证 993993993)991(-≡=9912)991()991(-- =)1984(mod )991()991)(11984495(991991-≡-+⨯,∴)1984(mod 0991)991(991993991991991993≡+-≡+. ∴991993991993|1984+.例9 用数码1,2,3,4,5,6,7 排成7位数,每个数码恰用一次,证明:这些7位数中没有一个是另一个的倍数. 证 若有两个7位数a ,b ,使得kb a = (1) 由于a ,b 均是由1,2,...,7所排成,故72≤≤k 由(1)得)9(mod kb a ≡,∴)9(mod 11⋅≡k ,即)9(mod 1≡k ,这与92≤≤k 矛盾,故结论成立.2.7构造例10 若一个正整数的标准分解中,每个素约数的幂次都大于1,则称它为幂数,证明:存在无穷多个互不相同的正整数,它们及它们中任意多个不同数的和都不是幂数.证 将全体素数从小到大依次记为1p ,2p ,...,n p ,….令11p a =,2212p p a =,当2≥n 时,n n n n n n p p p p p p a a 21222111...---==,下证 1a ,2a ,…,n a ,…满足要求.事实上, n n a p |,但2n p |/n a ,所以n a 不是幂数.又对于k i i i <<<≤ 211, )1(112121i i i i i i i i a a a a a a a a k k +++=+++ =)1(11i i Ap a +=)1(111212221i i i Ap p p p p +- , 其中A 为正整数.因为1)1,(11=+i i Ap p ,所以1i p 在)(21k i i i a a a +++ 的标准分解中的幂次为1,因而不是幂数.例11 设}2011,,3,2,1{ 中质数的个数为a ,n 为正整数且a n ≤<1,求证必有2011个连续正整数,其中恰有n 个质数.证 令}2010,,2,1,{+++=k k k k A k ,并令)(k f 为k A 中质数的个数,则易知a f =)1(,0)2!2012(=+f . 对于)1!2012(,,2,1+= k ,显然有1|)()1(|≤-+k f k f , 所以对于a n ≤<0,必存在一个0k ,使得 n k f =)(0,从而0k A 中的2011个连续整数满足要求.2.9 数学归纳法例12 设n 是正整数,求证:124323|51222-+-n n n .证 令22()332241n f n n n =-+-.因为0)1(=f ,所以)1(|512f ,假设)(|512n f ,那么对于1+n ,因为)183(8)()1(2--=-+n n f n f n,所以要证)1(|512+n f ,只需证)183(8|5122--n n,即只需证明)183(|642--n n.为此,令183)(2--=n n g n .显然有0)1(|64=g ,假设)(|64n g ,由于)199(64)19(8)()1(21+++=-=-+-- n n nn g n g ,∴)1(|64+n g ,由归纳法原理知对一切n ,有183|642--n n,从而有)1(|512+n f ,再由归纳法原理知,对于正整数n ,有)(|512n f .2.10反证法例13 试证方程042333=--z y x (1) 无正整数解.分析 若(z y x ,,)为(1)的一组解,则x 为偶数,令12x x =,则有0243331=--z y x ,从而知y 为偶数,再令12y y =,代入上式得04233131=--z y x ,从而知z 为偶数,再令12z z =,代入上式得042313131=--z y x ,因此),,(111z y x 也是方程(1)的解.这样由方程(1)的一组正整数解),,(z y x 必可得到另一组正整数解),,(111z y x ,且x x <1.因此,若开始取得的正整数解使得x 达到最小,则这种下降不可能进行.证 反证法. 若方程(1)存在正整数解,设),,(000z y x 是使得x 达到最小的正整数解,那么依分析的过程知必可得到方程(1)的一组正整数解),,(111z y x ,且01x x <,这与0x 达到最小相矛盾,这个矛盾表明方程(1)无正整数解.注:本题中分析的方法称为无穷递降法习 题1.设1≥≥n m ,m ,n 为整数,证明nm C mn m ),(是整数.2.设a ,b 为整数,证明:))1(()2)((|)!(1b n a b a b a a b n n -+++- .3.设n 是大于3的奇数,证明可将集合}1,,3,2,1{-n 的元素分成两组,每组21-n 个元素,使得两组数的和模n 同余.。

相关主题