飞机场通讯导航设施航空通讯有陆空通讯和平面通讯。
陆空通讯飞机场部门和飞机之间的无线电通讯。
主要方式是用无线电话;远距离则用无线电报。
飞机场无线电通讯设施20世纪80年代,载波通讯和微波通讯发达的区域,平面通讯一般不再利用短波无线电通讯设备。
无线电发讯台主要安装对飞机通讯用的发射设备;也不再单建无线电收讯台,而将无线电收讯台和无线电中心收发室合建在飞机场的航管楼内。
航空导航分航路导航和着陆导航。
航路导航①中长波导航台(NDB)。
是设在航路上,用以标出所指定航路的无线电近程导航设备。
台址应选在平坦、宽阔和不被水淹的地方,并且要远离二次辐射体和干扰源。
一般在航路上每隔200~250公里左右设置一座;在山区或某些特殊地区,不宜用NDB导航。
②全向信标/测距仪台(VOR/DME)全向信标和测距仪通常合建在一起。
全向信标给飞机提供方位信息;测距仪则给飞机示出飞机距测距仪台的直线距离。
它对天线场地的要求比较高。
在一般情况下,要求以天线中心为中心,半径300米范围内,场地地形平坦又不被水淹。
该台要求对二次辐射体保持一定的距离。
台址比中、长波导航台的要求严。
在地形特殊的情况下,可选用多普勒全向信标/测距仪台(DVOR/DME),以提高设备的场地适应性。
该台的有效作用距离取决于发射机的发射功率和飞机的飞行高度。
在飞行高度5700米以上的高空航路上,两台相隔距离大于200公里。
③塔康(TACAN)和伏尔塔康(VORTAC)塔康是战术导航设备的缩写,它将测量方位和距离合成为一套装置。
塔康和全向信标合建,称伏尔塔康。
其方位和距离信息,也可供民用飞机的机载全向信标接收机和测距接收设备接收;军用飞机则用塔康接收设备接收。
塔康和伏尔塔康台的设置以及台址的选择,和全向信标/测距仪台的要求相同。
④罗兰系统(LORAN)远距导航系统。
20世纪80年代航空上使用的主要是“罗兰-C”。
“罗兰-C”系统由一个主台和两个至四个副台组成罗兰台链。
“罗兰-C”系统的有效作用距离,在陆上为2000公里,在海面上为3600公里。
主台和副台间的距离可达到1400公里。
按所定管辖地区的要求,设置主台和副台;并按一般的长波导航台选址要求进行选址。
⑤奥米加导航系统(OMEGA)。
和“罗兰-C”一样,是一种远程双曲线相位差定位系统。
由于选用甚低频波段的10~14千赫工作,作用距离可以很远,两台之间的距离可达9000~10800公里。
只要有8个发射台,输出功率为10千瓦,即可覆盖全球。
罗兰系统和奥米加导航系统不是一个飞机场的导航设施,而是半个地球的甚至是全球性的导航设施。
飞机场终端区导航①归航台着陆引导设施。
飞机接收导航台的无线电信号,进入飞机场区,对准跑道中心线进近着陆,这样的导航台称归航台。
归航台建在跑道中心线延长线上。
距跑道入口的距离为1000米左右的称近距归航台(简称近台);距离为7200米左右的称远距归航台(简称远台)。
归航台一般都和指点标台合建。
指点标台标出该台与跑道入口的距离。
在一个降落方向上,只设置一座归航台的(不论是近台还是远台)称单归航台着陆引导设施;如果有近台和远台,则称双归航台着陆引导设施。
归航台的选址要求基本上和航路上导航台相同。
由于飞机的速度越来越快,机载设备越来越先进,因此归航台引导着陆在中国飞机场已逐步淘汰。
②全向信标/测距仪台(VOR/DME)除可用在航路上作为导航设备外,也可用作机场终端区导航设备。
这时,该台应设在跑道中心附近,距跑道中心线不少于150米、距滑行道中心线不少于75米。
对周围地形、地物的技术要求,和用作航路导航台时相同。
该台也可布置在指定穿云转弯点处,以引导飞机穿云下降。
③仪表着陆系统(ILS)。
是20世纪70年代国际上通用的着陆引导设备。
由航向台(LOC)、下滑台(G/P)、外指点标台(OM)、中指点标台(MM)和内指点标台(IM)组成。
航向台向飞机提供航向引导信息;下滑台向飞机提供下滑道引导信息;外、中、内指点标台则分别向飞机提供飞机距跑道入口距离的信息。
仪表着陆系统中,各台台址和跑道间的相互关系如图飞机场着陆引导设备台站平面布置图(以一个着陆方向为例)]所示。
在下述距离范围内,按技术要求选定。
航向台设在跑道中心线延长线上、距跑道终端约200~900米,具体位置取决于天线阵前方的场地,天线阵的安装高度和天线所发射的场型。
下滑台设在跑道的任一侧。
距跑道中心线120~200米距跑道入口约300~450米,具体位置取决于下滑天线前方场地的坡度、场地前方障碍物的高度和下滑角的大小。
外、中、内指点标台均设在跑道中心线延长线上,外台距跑道入口7200±300米;中台1050±150米;内台300~450米。
在指点标台安装有困难的地方,可在飞机场内下滑台处安装精密测距仪,用以起到相当于指点标台的作用。
仪表着陆系统中各台的修建,除了确定各台的位置外,尚须根据各台所发射的场型分别定出各台天线场地的大小和对周围地形、地物的技术要求。
航向台和下滑台的技术要求比较严格,地形要平坦,不被水淹,坡度不大于1%;要防止和避开二次辐射体的干扰;对架空线路、道路、车辆、飞机、栅栏、金属和非金属物体等都有不同的距离要求。
仪表着陆系统的运用性能分为三类:Ⅰ类引导飞机下降到60米的决断高度,并在跑道视程不少于800米的条件下,成功地进行进近;Ⅱ类引导飞机下降到30米的决断高度,并在跑道视程不少于400米的条件下,成功地进行进近;Ⅲ类又分Ⅲ类A、Ⅲ类B和Ⅲ类C。
Ⅲ类A没有决断高度的限制,在跑道视程不少于200米的条件下,在着陆的最后阶段,借助外部目视设施,降落在跑道上,并沿跑道滑行。
Ⅲ类B与Ⅲ类A同,但跑道视程为不少于50米,不带外部目视设施引导飞机到跑道;之后借助外部目视设施在跑道上滑行。
Ⅲ类C没有决断高度的限制,不借助外部目视设施引导飞机至跑道和在滑行道滑行。
④地面指挥引进系统。
由飞机场监视雷达(ASR)和精密进近雷达(PAR)组成。
没有飞机场监视雷达则不能称地面指挥引进系统,只能称精密进近雷达(也称着陆雷达)。
(a)着陆雷达在复杂气象条件下引导飞机着陆的辅助设备。
有效作用距离,在中雨天气时不少于15公里;一般天气不少于35公里。
作用范围:水平面为左右10;垂直面为-1~8。
在着陆雷达有效区域的飞机,根据飞机回波偏离雷达显示器上理想航向线和下滑线的相对位置以及飞机到着陆点的距离,用无线电话指挥飞机下降到决断高度,然后驾驶员用目视着陆。
着陆雷达的布置,在一般情况下,只要跑道足够长,在一条跑道两个降落方向上都可使用同一设备。
其位置一般定在跑道的中间、距跑道中心线120~185米。
(b)飞机场监视雷达。
用来辨别监视和调配飞机场场区飞行动态。
其位置与航管楼距离不要超过设备电缆所允许的长度(一般不超过2000米),设在开阔和不被水淹地方,应保证视界遮蔽仰角不得大于0.5。
对别的雷达设备、测距仪和全向标台等应分别保持一定距离。
⑤微波着陆系统。
由方位引导仰角引导和拉平仰角引导等设备所组成。
方位引导是在水平面上可在跑道中心线每边20~60区域内提供任意要求的航道,仰角引导是在垂直面上可以提供许多下滑道(如从1~15),拉平仰角引导基本原理与仰角引导相同,但所发射的是更窄更薄的波瓣,以便为拉平阶段的飞机提供精确的仰角引导信息,该系统具有提供精密测距信息的能力。
微波着陆系统工作在微波波段,空间扫描的波瓣主要依靠天波来形成,受地形和地物的影响较小,因此具有仪表着陆系统无法比拟的高精度、高稳定性、易架设、易调整等优点。
随着电子计算技术、各类导航设施和传输手段的提高、发展而成为自动化空中交通管制系统。
航路系统把以前人工获取和处理信息的方法,改变为自动化设施装有应答机的飞机提供连续的高度和标记信息,全部信息输入计算装置进行处理,及时修正飞行数据,并以自动目标跟踪的字母数字形式显示在雷达显示器上,将能做到复杂交通的自动预示和预先规划交通流量。
在航站区,自动雷达航站系统(ARTS)提供一次雷达目标和信息雷达目标两者的自动跟踪,在雷达显示器上显示每架飞机的字母数字信息。
自动化系统能更快速、更精确地进行空中和航站管制。
(见彩图[甚高频全向信标台──无线电导航设备之一(厦门航空港)]航空无线电领航-正文测定无线电发射台的方位、距离或距离差,以确定飞机位置线,借以引导飞机航行,是航空领航的方法之一。
航空无线电领航是由船舶无线电导航发展而来的。
航空无线电领航按飞机的飞行阶段可分为航线导航和航站区域着陆引导,不同的无线电领航使用不同性能的无线电导航设施。
航线导航引导飞机在航线上的飞行。
航线导航主要使用下列无线电导航设施。
导航台工作频率在200~1750千赫范围内的无线电发射台(电台)。
由机上自动定向机(无线电罗盘)测量导航台的方位线。
两个以上导航台方位线的交点为飞机的位置。
一条导航台方位线可用于飞机对正电台飞行,这种飞行叫做归航。
如果在航线所经过的主要地点设置导航台,则可利用导航台方位线归航的方法使飞机沿预定的方位线从一个电台飞至另一个电台,直至目的地。
全向信标又称伏尔(VOR),是甚高频近程导航系统,在108.0~118.0兆赫频段工作。
它利用两个每秒30周的调制信号的相位差来确定方位。
这两个调制信号叠加在甚高频载波上,一个是基准信号,在发射台0°~360°各个方位上相位相同;另一个是可变信号,其相位随方位而变化。
这两个调制信号在全向信标台的磁北方位上相位一致(相位差为0°),在其他方位上可变信号与基准信号之间的相位差等于飞机对全向信标台的方位。
机上全向信标接收机接收来自地面全向信标台的基准信号和可变信号,比较其相位差别并转换成方位指示,即为电台至飞机的径向方位,同时驾驶员可以在航道罗盘上选定预计的径向方位,根据实测方位与预选方位的相位差指示飞机偏离预选方位的程度,操纵飞机沿预选方位飞行。
测距机国际标准测距系统,在960~1215兆赫频段工作,包括飞机询问器和地面测距台的应答器两部分。
飞机询问器向地面测距台发射询问脉冲,脉冲重复率任意变化,地面测距台收到飞机的询问脉冲后,经一定的时间延迟,在同飞机发射频率间隔63兆赫的频率发射相应的回答脉冲。
飞机在收到地面所有的回答脉冲中按照询问脉冲任意变化的脉冲重复率辨别相应的回答脉冲,而后与它自己的询问脉冲比较,其间的时间延迟减去固定延迟后按每海里12.36微秒换算成距离(海里数)。
按照国际民用航空组织的规定,测距系统的准确度为±0.5海里或所测距离的3%,要求达到的测量范围为200海里,飞行高度为22900米。
测距台一般和全向信标台装在同一地点,叫作全向信标/测距台。
这是国际民用航空组织采用的标准近程导航系统。
在航路上设置的全向信标/测距台,能同时为航路飞行的飞机提供航迹引导和飞机至测距台的距离,从而可使飞机按方位距离确定自己的位置。