关键词:IGBT;驱动与保护;IXDN404引言绝缘栅晶体管IGBT是近年来发展最快而且很有前途的一种复合型器件,并以其综合性能优势在开关电源、UPS、逆变器、变频器、交流伺服系统、DC/DC变换、焊接电源、感应加热装置、家用电器等领域得到了广泛应用。
然而,在其使用过程中,发现了不少影响其应用的问题,其中之一就是IGBT的门极驱动与保护。
目前国内使用较多的有富士公司生产的EXB系列,三菱公司生产的M579系列,MOTOROLA公司生产的MC33153等驱动电路。
这些驱动电路各有特点,均可实现IGBT的驱动与保护,但也有其应用限制,例如:驱动功率低,延迟时间长,保护电路不完善,应用频率限制等。
本文,以IXYS公司生产的IGBT驱动芯片IXDN404为基础,介绍了其特性和参数,设计了实际驱动与保护电路,经过实验验证,可满足IGBT的实际驱动和过流及短路时实施慢关断策略的保护要求。
1 IXDN404驱动芯片简介IXDN404为IXYS公司生产的高速CMOS电平IGBT/MOSFET驱动器,其特性如下:--高输出峰值电流可达到4A;--工作电压范围4.5V~25V;--驱动电容1800pF<15ns;--低传输延迟时间;--上升与下降时间匹配;--输出高阻抗;--输入电流低;--每片含有两路驱动;--输入可为TTL或CMOS电平。
其电路原理图如图1所示,主要电气参数如表1所列。
表1 IXDN404主要电气参数符号参数测试条件最小值典型值最大值单位Vih输入门限电压,逻辑1空 3.5空空 VVil输入门限电压,逻辑0 空空空 0.8VVoh输出电压,逻辑1空 Vcc-0.025空空 VVol输出电压,逻辑0空空空0.025VIpeak峰值输出电流Vcc=18V4空空 AIdc连续输出电流Vce=18V空空 1Atr上升时间C1=1800pF Vcc=18V111215ns tf下降时间C1=1800pF Vcc=18V121417ns tond上升时间延迟C1=1800pF Vcc=18V333438ns toffd下降时间延迟C1=1800pF Vcc=18V283035ns Vcc供电电压空 4.51825VIcc供电电流Vin=+Vcc空空10μA2 驱动芯片应用与改进图2为IXDN404组成的IGBT实用驱动与保护电路,该电路可驱动1200V/100A的IGBT,驱动电路信号延迟时间不超过150ns,所以开关频率图2由IXDN404组成的IGBT保护与驱动电路图1IXDN404电路原理图可以高达100kHz。
可应用于DSP控制的高频开关电源、逆变器、变频器等功率电路中。
根据IXYS公司的使用手册,IXDN404仅能提供0~+Vcc的驱动脉冲。
我们在此基础上,增加5.1V稳压二极管Z3以实现-5V偏置电压;由稳压管电压为光耦6N137和反相器CD4069供电,节省了一路驱动电源;增加降栅压及慢关断保护电路,实现IGBT的保护功能;降栅压及慢关断电路是通过控制IXDN404供电电压Vcc来实现的,明显不同于其它保护电路的前级降压控制方式。
下面介绍其工作原理。
2.1 正常开通过程当控制信号为高电平时,快速光耦6N137导通,经过一级反相,输入IXDN404,输出+15V 脉冲,IGBT正常导通。
同时,由于光耦输出为反相,V4截止,V5导通,C1由电源充电,C1电压不会超过9V,这是因为IGBT正常导通时Vces不高于3V,二极管D2导通,A点电位箝位在8V,加上电阻R10的压降,C点电位接近9V。
Z1截止,V2截止,V1导通,B点电位接近20V;Z2截止,V3截止,D点电位接近B点电位。
C1充电时间常数τ1=R9×C1=2.42μs,C1充电到9V的时间为t1=τ1ln[20/(20-19)]=1.45μs(1)2.2 正常关断过程当控制信号为低电平,光耦输出高电平,反相输出低电平,由于Z3箝位IXDN404输出脉冲为-5V,IGBT正常关断。
这时,V4导通,V5截止,C点电位保持在9V;Z1截止,V2截止,V1导通,B点电位接近20V;Z2截止,V3截止,D点电位接近B点电位。
图22.3 保护过程设IGBT已经导通,各点电位如2.1所说。
当电路过流时,IGBT因承受大电流而退出电阻区,Vces上升,二极管D2截止,A点对电容C1的箝位作用消失;C点电位从9V上升,同时Z1反向击穿,V2导通,V1截止,B点电位由R1和Rc以及IXDN404芯片内阻分压决定,箝位在15V,栅压降为10V。
栅压的下降可有效地抑制故障电流并增加短路允许时间。
降栅压运行时间为t2=τ1ln(20-0)/(20-13)=1.09μs(2)如果在这段时间内,电路恢复正常,D2导通,A点继续箝位,V2截止,V1导通,电路恢复2.1所说状态。
如果D2仍处于断态,也就是故障电流仍然存在,C点电压继续上升,经过t2时间上升到13V,Z2反向击穿,V3导通,电容C2通过电阻R12放电,D点与B点电位同时下降,IGBT栅压逐渐下降,实现慢关断过程,避免了正常关断大电流时所引起的过电压。
慢关断过程时间为t3,由C2和R12决定。
由IXDN404工作电压范围为4.5~25V,τ2=R12×C2=4.84μs,可知t3=τ2ln(15/4.5)=5.83μs(3)另外,在IGBT开通过程中,如果二极管D2不能及时导通,将造成保护电路的误动作,因此D2要选择快速二极管,也可通过适当增加Z1稳压值和增大电阻R9以增大C1充电时间常数延长保护电路动作时间。
但这与保护动作的快速性相矛盾,具体应用时要根据实际电路要求和功率器件的特性作出折中的选择。
2.4 几点说明1)为使驱动功率达到最大,本电路将两路输入输出并联使用,最大驱动峰值电流可达8A,这个峰值电流是由电容Cc瞬间放电产生;2)光耦6N137输出为输入反相,IXDN404为同相输入输出,为保证控制逻辑正确,中间需加一级反相器,也可采用带反相的IXDI404;3)图2中可在E点处加入一个光耦,其输出可作为短路保护信号送给控制逻辑,以封锁本路及其它各路的PWM信号,确保主电路安全;4)IXDN404驱动电路对脉冲信号非常敏感,实际操作时要保证连线尽量短,输出要用双绞线接IGBT,电路所用元器件也可采用贴片式,既缩小驱动电路体积,也提高了工作稳定度。
图3为实测IGBT的门极驱动信号,其中通道1为输入控制信号,通道2为输出驱动信号。
所用IGBT为仙童公司HGTG18N120BND。
从图中可以看出驱动电路延迟时间仅为100ns。
其中图3(d)为模拟IGBT过流时的保护波形,首先降栅压运行,然后慢关断,最后由于低电压供电,IXDN404输出驱动电压封锁在-2V左右。
3 结语由IXDN404组成的IGBT驱动与保护电路可满足IGBT驱动要求,其特点可归纳如下:--驱动电源+20V单路供电,驱动栅压+15V~-5V;--最大驱动峰值电流可达8A,满足大功率IGBT驱动要求;--电路信号延迟时间短,工作频率可以达到100kHz或者更高,可适应大多数电路需要;--可实现过流保护及降栅压慢关断功能;--电路成本相对较低。
综上所述,这种驱动保护电路是一种低成本、高性能的IGBT驱动电路。
几种用于IGBT驱动的集成芯片2 几种用于IGBT驱动的集成芯片2. 1 TLP250(TOSHIBA公司生产)在一般较低性能的三相电压源逆变器中,各种与电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。
同时,这一检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。
因此在这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。
这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。
这里主要针对TLP250做一介绍。
TLP250包含一个GaAlAs光发射二极管和一个集成光探测器,8脚双列封装结构。
适合于IGBT或电力MOSFET栅极驱动电路。
图2为TLP250的内部结构简图,表1给出了其工作时的真值表。
TLP250的典型特征如下:1)输入阈值电流(IF):5 mA(最大);2)电源电流(ICC):11 mA(最大);3)电源电压(VCC):10~35 V;4)输出电流(IO):± 0.5 A(最小);5)开关时间(tPLH /tPHL):0.5 μ s(最大);6)隔离电压:2 500 Vpms(最小)。
表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。
注:使用TLP250时应在管脚8和5间连接一个0.1 μ F的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过1 cm。
图3和图4给出了TLP250的两种典型的应用电路。
在图4中,TR1和TR2的选取与用于IGBT驱动的栅极电阻有直接的关系,例如,电源电压为24 V时,TR1和TR2的Icmax≥ 24/Rg。
图5给出了TLP250驱动IGBT时,1 200 V/200 A的IGBT上电流的实验波形(50 A/10 μ s)。
可以看出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有一个反向的冲击。
这将会产生很大的di/dt和开关损耗,而且对控制电路的过流保护功能要求很高。
TLP250使用特点:1)TLP250输出电流较小,对较大功率IGBT实施驱动时,需要外加功率放大电路。
2)由于流过IGBT的电流是通过其它电路检测来完成的,而且仅仅检测流过IGBT的电流,这就有可能对于IGBT的使用效率产生一定的影响,比如IGBT在安全工作区时,有时出现的提前保护等。
3)要求控制电路和检测电路对于电流信号的响应要快,一般由过电流发生到IGBT可靠关断应在10 μ s以内完成。
4)当过电流发生时,TLP250得到控制器发出的关断信号,对IGBT的栅极施加一负电压,使IGBT硬关断。
这种主电路的dv/dt比正常开关状态下大了许多,造成了施加于IGBT两端的电压升高很多,有时就可能造成IGBT的击穿。
2.2 EXB8..Series(FUJI ELECTRIC公司生产)随着有些电气设备对三相逆变器输出性能要求的提高及逆变器本身的原因,在现有的许多逆变器中,把逆变单元IGBT的驱动与保护和主电路电流的检测分别由不同的电路来完成。
这种驱动方式既提高了逆变器的性能,又提高了IGBT的工作效率,使IGBT更好地在安全工作区工作。
这类芯片有富士公司的EXB8..Series、夏普公司的PC929等。