2.5状态估计-卡尔曼滤波
OR
分成二项
ˆ b z b z X k 1 k 1 i k 1 k 1
i 1
k
ˆ X ˆ b (z X ˆ ) X k 1 k k 1 k 1 k
第一项同时乘、除一个bk
k b bk 1 ˆ k 1 ˆ X b z b z X k bk 1 zk 1 k 1 k i k 1 k 1 bk i 1 bk
bk 1
ˆ X k 1
z
递 归 公 式
1
20
X k 1 X k bk 1 ( zk 1 X k )
^
^
^
自动化学院
NUST
智能信息处理技术
应用时要注意初始条件,即递推开始时的初始值
ˆ 0最佳,递 为使 X 推初始条件
ˆ 0 )2 ] E[( x X 0 ˆ X 0
x,
式中: x —恒定信号或称被估参量 nk —观测噪声采样
7
自动化学院
NUST
智能信息处理技术
h1, h2, …, hm是滤波器的脉冲响应hj的采样,或称滤波器的加权系数。滤 波器的输出
ˆ hi zi X
i 1
m
h1=h2=…=hm=1/m
m 1 ˆ z X i m i 1
设要估计的随机信号为由均值为0,方差为σ2w的白噪声激励的一个一阶递归过 程,即信号对时间变化满足动态方程:
x(k)=ax(k-1)+w(k-1)
式中,a——系统参数 w(k-1)——白噪 声采样。
如果令x(0)=0,E[w(k)]=0, 则
0 j 0 Pw ( j ) E[ w(k ) w(k j )] 2 w j 0
30
自动化学院
NUST
智能信息处理技术
解之,得 将其代入预测方程,有
a(k)=aa(k)=?cβ(k)
1. 最优非递归估计
非递归滤波器的估计值及其估计误差可分别表示为
ˆ hi zi X
i 1
m
在b<<m时
ˆ x )2 ] E[( h z x )2 ] P E[( X i i
i 1
m
最优非递归估计近似于采样平均
在噪声方差σ2n较大时
均值为零的白噪声
性能明显优于非最佳情况
18
自动化学院
NUST
智能信息处理技术
z k 1
bk 1
最优递归估计器 ˆ X k 1
1( / 1 bk )
z
1
递 归 公 式
bk 1 ^ X k 1 Xk zk 1 1 bk 1 bk
^
19
自动化学院
NUST
智能信息处理技术
z k 1
最优递归估计器
估计值, 则
ˆ k (1 a) yk X
12
ˆ k (1 a k ) x (1 a ) a k i ni X
i 1
k
自动化学院
NUST
智能信息处理技术
当k值较大时, 估值的均方误差
1 a 2 2 ˆ x) 2 P E [( X ] ? n k k 1 a
卡尔曼滤波器的局限性:
卡尔曼滤波器解决运动目标或实体的状态估计问题时,动态方程和测量方程均为线性。
4
自动化学院
NUST
智能信息处理技术
一、数字滤波器作估值器
1、非递归估值器
2、递归估值器
5
自动化学院
NUST
智能信息处理技术
1、非递归估值器
采样平均估值器:
z1 h1 z2 h2 z3 h3 ∑
ˆ X
3
2、扩展Kalman滤波应用于时间非线性的动态系统。 自动化学院
NUST
智能信息处理技术
卡尔曼滤波器
卡尔曼滤波器的应用:
通信、雷达、导航、自动控制等领域 航天器的轨道计算、雷达目标跟踪、生产过程的自动控制等
对机动目标跟踪中具有良好的性能
:卡尔曼滤波器的应用特点
为最佳估计并能够进行递归计算 只需当前的一个测量值和前一个采样周期的预测值就能进行状态估计
i 1 i 1
k 1
k 1
1 2 P (k 1) n (k 1) b
16
自动化学院
NUST
智能信息处理技术
b=σ2n/σ2x及hi(k)=1/(k+b)
hi (k ) hi (k 1)
P (k )
2 n
bk bk 1
P (k 1)
2 n
ˆ 0 E ( x) X
若E(x)=0
ˆ 0 X 0 ˆ 0 X 20 x 1 b0 b0 2 ? n b
从零开始递推
21
自动化学院
NUST
智能信息处理技术
三、标量卡尔曼滤波器
主要作用:
对掺杂有噪声的随机信号进行பைடு நூலகம்性估计。
22
自动化学院
NUST
智能信息处理技术
1、模型 1) 信号模型
24
自动化学院
NUST
智能信息处理技术
2) 观测模型
观测模型由下式给出:
z(k)=cx(k)+v(k)
式中:c——测量因子;
v(k)——E(·)=0,
D(·)=σ2n的白噪声。
25
自动化学院
NUST
智能信息处理技术
2、标量卡尔曼滤波器
由前将递归估计的形式写成:
ˆ ( k ) a( k ) X ˆ (k 1) b(k ) z(k ) X
而一次取样的均方误差
2 2 2 P E [( x n x ) ] E ( n ) 1 k k n
故这一结果的均方误差约为一次采样的(1-a)/(1+a)倍。
13
自动化学院
NUST
智能信息处理技术
二、线性均方估计
1、最优非递归估计
2、递归估计
14
自动化学院
NUST
智能信息处理技术
智能信息处理技术
第5讲 状态估计—卡尔曼滤波
智能信息处理技术
状态估计的主要内容
状态估计主要内容: 位置估计: 速度估计:
位置与速度估计
距离、方位和高度或仰角的估计 速度、加速度估计
应用:
通过数学方法寻求与观测数据最佳拟合的状态向量。
1、确定运动目标的当前位置与速度; 2、确定运动目标的未来位置与速度; 3、确定运动目标的固有特征或特征参数。
自动化学院
NUST
智能信息处理技术
k时刻的输出:
yk=ak-1z1+ak-2z2+…+azk-1+zk
将zk中的信号和噪声分开,并代入,有输出
k 1 ak yk x a k i ni 1 a i 1
由于│a│<1,故随着k值的增加,yk趋近于x/(1-a)。这样,如果以(1-a)yk作为x的
28
自动化学院
NUST
智能信息处理技术
3、标量卡尔曼预测器
标量卡尔曼滤波是对掺杂有噪声的随机信号进行线性估计。但经 常要对信号的未来值进行预测,特别是在控制系统中。根据预测 提前时间的多少,把预测分成1步、2步、…、 m步预测, 通常
ˆ (k 1 / k ) 。预测的步数越多, 误差越大。 把1步预测记作 X
这种最小均方误 差准则下的线性 滤波,通常称作
m个参数逐一求导,令等于零
1 h ˆ i X ? zi m b i 1
15
m
b=σ2n/σ2x
标量维纳滤波。
ˆ x )2 ] P E [( X
1 2 n mb
h1 h2 hm
1 mb
自动化学院
NUST
智能信息处理技术
2、由最优非递归估计导出递归估计
由前可知, 非递归估值器可以表示为
ˆ k hi zi hi (k ) zi X
i 1 i 1
k
k
1 2 P ( k ) n k b
k+1次取样
ˆ k 1 hi zi hi (k 1) zi X
2
自动化学院
NUST
智能信息处理技术
状态估计的主要方法:
这些方法针对匀速或 匀加速目标提出,如 目标真实运动与采用 的目标 模型不致, 滤波器发散。
1、α-β滤波 2、α-β-γ滤波
3、卡尔曼滤波
:算法的改进及适应性
状态估计难点:
机动目标的跟踪
1、自适应α-β滤波和自适应Kalman滤波均改善对机动目标的跟踪能力。
最后有递归估值器:
26
ˆ (k ) aX ˆ (k 1) b(k )[z(k ) acX ˆ (k 1)] X
自动化学院
NUST
智能信息处理技术
滤波器增益b(k) ?
2 2 1 b(k ) cP ( k )[ c P ( k ) 1 1 n]
2 2 P ( k ) a P ( k 1 ) 1 w
均方误差
1 2 P ( k ) n b( k ) c
对于给定的信号模型和观测模型,上述一组方程便称为一维标量卡尔曼滤波器, 其结构如图所示。
27
自动化学院
NUST
智能信息处理技术
z(k) +
∑ -
b(k)
+
∑ +
ˆ (k ) X
c
a
z- 1
标量卡尔曼滤波器结构
ˆ (k ) aX ˆ (k 1) b(k )[z(k ) acX ˆ (k 1)] X
10