当前位置:文档之家› 药理实验.doc

药理实验.doc

[键入公司名称] [键入公司地址] [键入电话号码] [键入传真号码]2010/12/5华西药学院08级四班钱明春[在此处键入文档的摘要。

摘要通常是对文档内容的简短总结。

在此处键入文档的摘要。

摘要通常是对文档内容的简短总结。

]糖尿病(diabetes)是由遗传因素、免疫功能紊乱、微生物感染及其毒素、自由基毒素、精神因素等等各种致病因子作用于机体导致胰岛功能减退、胰岛素抵抗(Insulin Resistance,IR)等而引发的糖、蛋白质、脂肪、水和电解质等一系列代谢紊乱综合征,临床上以高血糖为主要特点,典型病例可出现多尿、多饮、多食、消瘦等表现,即“三多一少”症状。

糖尿病(Diabetes)分1型糖尿病和2型糖尿病。

在糖尿病患者中,2型糖尿病所占其中的比例约为95%。

1型糖尿病多发生于青少年,因胰岛素分泌缺乏,依赖外源性胰岛素补充以维持生命。

2型糖尿病多见于中、老年人,其胰岛素的分泌量并不低,甚至还偏高,临床表现为机体对胰岛素不够敏感,即胰岛素抵抗(Insulin Resistance,IR)。

一、靶点选择乙酰辅酶A羧化酶(acetyl CoA Car-boxylase,ACC)是近年来在肥胖及糖尿病(DM)发病机制研究中被逐渐重视的一种促进脂肪酸合成的酶,其处于脂肪和糖代谢的一个交汇点,在碳水化合物和脂肪代谢中有重要作用,ACC有可成为将来DM治疗的新靶点。

一、ACC的生物学特性ACC是脂肪酸合成限速酶,它催化脂肪酸合成的第一步反应,即ACC合成丙二酰CoA(MA),然后MA在脂肪酸碳链延长酶系作用下进一步合成长链脂肪酸。

产物MA还能够抑制肉碱脂酰转移酶1(CPT1),阻止长链脂肪酸转移至线粒体内膜,减少脂肪酸的氧化。

ACC通过这两种途径促进长链脂肪酸的合成并减少其氧化[1]。

ACC存在于胞液中,有单体和多聚体两种形式,单体无活性,多聚体催化活性比单体高10~20倍,受固醇调节元件结合蛋白1 (sREBPlc)的调节[2]。

ACC有2种亚型,ACC1主要分布在脂肪合成、储存的器官和组织,如肝脏、脂肪、胰岛和下丘脑;而ACC2主要分布在脂肪分解的组织即骨骼肌和心肌。

二、ACC在体内的调节最近研究表明,ACC受磷酸化、去磷酸化的调节,AMP激活的蛋白激酶(AMPK)是调节ACC 活性的主要物质,可以使ACC磷酸化,抑制ACC的作用[3] 。

而蛋白磷酸化酶2则使ACC去磷酸化,激活ACC。

当细胞接受刺激或能量消耗增加时,细胞内AMPK含量增加,使ACC磷酸化增加而活性降低,进而减少脂肪酸合成并提高脂肪酸的氧化量,以适应能量增加的需求。

当机体内能量储存增加或能量需求减少时,体内胰岛素含量升高,增加脂肪酸的合成从而促进脂肪在体内的堆积。

胰岛素能通过蛋白磷酸酶的作用使磷酸化的ACC去磷酸化而使ACC恢复活性,而胰高血糖素能激活AMPK使ACC磷酸化而降低其活性。

NogalskaA等[4]发现,在大鼠白色脂肪组织中,随着瘦素浓度的升高,ACCmRNA表达逐渐降低,瘦素对ACCmRNA表达的抑制作用,与抑制ACC上游调控因子sREBPlcmRNA表达有关。

另外,三碘甲状腺氨酸、柠檬酸、异柠檬酸、辅基生物素以及芳香烃类及其衍生物均有一定调节ACC活性的作用。

三、ACC的作用与能量代谢1、在进食以碳水化合物为主的餐后状态下:在胰岛β细胞,ACC1催化合成的MA,是葡萄糖代谢生成ATP、关闭ATP敏感的钾离子通道、改变膜电位、增加钙离子而刺激胰岛素分泌的重要协同因子,可以增加胰岛素分泌。

在肝脏,进食碳水化合物和胰岛素刺激肝ACC1的活性,合成MA,促进糖向脂肪转化。

在脂肪氧化的组织-骨骼肌,ACC2催化合成的MA,通过负反馈作用抑制CPT-1的作用,从而抑制线粒体的脂肪酸氧化。

在脂肪组织,胰岛素促进脂肪储存、抑制脂肪水解,激活ACC1的活性,促进脂肪合成作用。

在下丘脑,ACC1可能参与了饱感的过程,高的胰岛素和血糖水平(餐后状态),激活ACC1,可以抑制动物的摄食行为。

机体不同组织ACC活性的变化,使机体利用糖类和储存脂肪,使得进餐后的血糖恢复到基础水平。

2、在空腹和以脂肪为主要能量来源状态下:在空腹状态下,血糖较低,胰岛素水平降低和胰高血糖素水平升高有利于脂肪水解。

血FFA 升高,抑制肌肉ACC2表达,使MA减少,从而解除对CPT-1的抑制,增加脂肪的氧化,使得人体适应以脂肪酸为能量的来源。

总之,在进食后和高胰岛素水平的情况下,ACC1是激活状态,协助机体以脂肪形式储存能量或减少摄食;而在空腹状态下,ACC2是被抑制的,有利于脂肪的水解和氧化。

这使得我们有可能选择不同ACC亚型,来达到治疗DM的目的。

三、改变ACC的活性与DM治疗(一)抑制ACC2活性治疗DM/改善胰岛素敏感性1、长链脂肪酸是生理性的ACC2抑制剂。

长链脂肪酸衍生物5-(tetradecyloxy)-2-furoic acid(TOFA) 可以在细胞内转化为其辅酶A的衍生物, 抑制ACC2的活性, 减少实验动物和培养肝细胞的脂肪酸合成[5]。

2、选择性敲除基因ACC2。

Wakil等[6]报道了选择性敲除基因ACC2,并维持ACC1功能的小鼠,表现为骨骼肌ACC2浓度降低, 肌肉脂肪酸氧化增加,肝脏的脂肪含量减少,在进食增多时全身总的脂肪含量减少、血糖和FFA水平降低。

这些观察进一步支持应用抑制ACC2治疗DM 的观念,但啮齿类与人类的巨大差异使得我们得慎重看待这些结果。

3、非选择性的ACC抑制剂。

近年来CP-610431和CP-641086相继被发现,引起人们的关注。

Harwood HJ Jr等[7]发现它们能同时抑制ACC1和ACC2的活性,减少实验动物肝脏和脂肪组织的脂肪酸合成,增加肌肉组织脂肪氧化,而且发现CP-640186在减少肌肉脂肪含量及全身脂肪量,改善胰岛素敏感性方面优于CP-610431,这有可能用于DM的治疗。

尽管如此,增加组织脂肪氧化可能会带来一系列问题。

我们知道,在减肥治疗的最早阶段,甲状腺素增加氧化代谢可以减轻体重,但产生了包括影响心脏的各种并发症,从而被禁用于减肥治疗。

近年研究表明,氧化应激是DM慢性并发症发生及发展的中心环节,因而通过抑制ACC2或其他方法增加氧化代谢的远期影响不容乐观。

(二)激活ACC1活性治疗DM抑制ACC2,可以增加脂肪的分解代谢,从而治疗DM。

相反,激活ACC2可能导致脂肪氧化下降,是不利于DM治疗的。

但是,如果激活的是ACC1而不是ACC2,可能从另一方面增加机体的储存功能或抑制食欲来治疗DM。

1、ACC1与胰岛素分泌作用:血葡萄糖升高时,其代谢的产物-ACC合成MA,与胰岛素分泌中关闭钾通道-改变膜电位-启动电位依赖的钙离子通道,激发胰岛素分泌过程相协同,增加胰岛素分泌[8]。

在胰岛β细胞表达ACC1的反义mRNA,可以降低ACC1的活性,减少MA的水平,降低葡萄糖刺激的胰岛素分泌[9]。

2、ACC1与脂肪合成作用:刺激ACC1,肝脏和脂肪的生脂作用的增加,可以充分利用糖,协助糖向脂肪转化。

Thampy GK等[10]研究发现,胰岛素增敏剂治疗动物18天,使得肝脏ACC1活性增加200%,可促进肝脏的脂肪合成。

胰岛素增敏剂改善了胰岛素抵抗,尽管脂肪组织总量增加,但是内脏脂肪、肝脏、肌肉的脂肪减少,综合作用是纠正了血糖和其它代谢紊乱。

3、ACC1与抑制食欲作用:Xue B等[11]研究发现,下丘脑的AMPK活性可被代谢和激素信号改变并介导摄食反应,AMPK在低的能量供给的状态下激活,刺激食欲,AMPK活性对食欲的影响是通过影响ACC1而发挥作用的。

Namkoong C等[12]发现:链脲佐菌素所致DM的大鼠,有明显的多食和消瘦,下丘脑AMPK活性增加,ACC1活性降低;长期胰岛素治疗或抑制AMPK 活性能完全预防这种改变。

以上研究均提示刺激下丘脑ACC1可能抑制食欲。

总之,如果一种ACC1兴奋剂能够刺激胰岛素分泌,增加脂肪的合成,同时刺激下丘脑ACC1,抑制食欲,这样即增加了能量储存,又减少了摄食,可能用来治疗DM。

如果选择性ACC1激活,又不会影响脂肪酸在肌肉等处的氧化分解,这将有可能成为理想的治疗DM的药物。

四、甜菊苷甙(stevioside,SV)作为ACC激动剂治疗DM的发现SV是从南美植物甜菊中提取的一种分子量为800左右的二萜类化合物,有3个葡萄糖残基。

目前证实SV及其衍生物能通过增加ACC活性发挥降糖、改善胰岛素敏感性、降压等作用,SV很有可能成为崭新的治疗DM的药物[13-14]。

1、SV增加胰岛素分泌及改善胰岛素敏感性的作用:Jeppesen PB等[15]研究发现,SV在体内、体外均能刺激胰岛素分泌,而且这种刺激作用是依赖葡萄糖浓度的;SV还可增加胰岛素基因的表达,增加胰岛的胰岛素含量。

Chen J等[16]还发现SV与格列本脲不同,其不增加基础胰岛素分泌,长期使用SV并导致胰岛β细胞失去对其敏感性。

最近Chang JC等[17]报道,SV能够改善果糖诱发的胰岛素抵抗,降低DM动物的甘油三酯、胆固醇和FFA。

提示SV可以用于DM的治疗,而不会因为增加ACC的活性导致肥胖。

2、SV对胰高血糖素的作用:DM患者餐后胰高血糖素不被抑制,也是血糖升高的原因之一,抑制胰高血糖素分泌也能降低血糖。

Hong J等[18]研究发现:SV对长期软脂酸诱导的α细胞胰高血糖素分泌有抑制作用,这提示SV对DM的治疗是有益的。

3、SV的降压作用Jeppesen PB等[19]发现SV有降低动物血压的作用,同样SV在人类也有累似的报道。

在一项多中心对照研究中,发现SV能显著降低轻度高血压患者的血压[20]。

另外,Gregersen S等[21]对伴有50-60%高血压的T2DM患者研究发现,SV有降糖和降压双重作用,同时不增加患者的体重。

五、ACC1激动剂治疗DM的前景和需要解决的关键问题1、ACC1激动剂治疗DM应用前景ACC1激动剂-SV或类似物作为治疗DM最少有以下优点:ACC1是一个新的靶点,临床还没有任一药物是通过活化ACC而发挥降糖作用的;SV刺激胰岛素分泌是依赖于葡萄糖的,不易引起低血糖;SV增加胰岛素基因的表达,可能不引起β细胞功能衰竭;SV能降低血压和胰高血糖素,显示其具有独特应用前景。

2、ACC1激动剂治疗DM需要解决的问题SV作为ACC1激动剂刺激胰岛素分泌,是否引起体重增加;在以往的体外实验中,SV能够抑制脂肪酸跨细胞膜转运,有轻度的抑制脂肪氧化作用,但有关报道很少。

在影响脂肪氧化的同时,对糖代谢影响也不十分清楚;SV是否影响摄食行为;SV可以改善果糖诱发的胰岛素抵抗,但是否影响DM动物胰岛素敏感性还不清楚。

总之,ACC可通过调节脂肪酸的合成与分解过程来影响脂肪的代谢过程。

相关主题