当前位置:文档之家› 湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第14,15章课后习题参考答案

湖南大学物理(2)第14,15章课后习题参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). R 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5).0i ,沿轴线方向朝右. ; (6). )2/(210R rIπμ, 0 ;(7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r rRIB ≤π=μ 因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ 因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+IμIS 2R1 m2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得 NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=S S B d Φr b r NId 2π=μ12ln 2R R NIb π=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑i I02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条, 其面积为 x S d 1d ⋅=.窄条处的磁感强度202R IxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦx通过1m 长的一段S 平面的磁通量为⎰π=Rr x R Ix20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0EF DE BC AB B B B B B+++=)sin (sin 4120ββμ-π=aIB AB , 方向⊗ 其中 2/1)2/(sin 2==a a β,0sin 1=β ∴ a I B AB π=240μ, 同理, aIB BC π=240μ,方向⊗.同样 )28/(0a I B B EF DE π==μ,方向⊙. ∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅=αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =2a2aaaIPIP AB C D E IIIO B A D C O 'α α B31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电) (2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

(2) 由霍耳效应知,在磁场不太强时,霍耳电势差U 与电流强度I ,磁感强度B 成正比,而与样品厚度a 成反比,即:a IBK U = 而 q n K 01=∴ 根椐题给条件,载流子浓度为: 2001082.2⨯==aqUIBn m -3 四 研讨题1. 将磁场的高斯定理与电场的高斯定理相比,两者有着本质上的区别。

从类比的角度可作何联想?参考解答:磁场的高斯定理与电场的高斯定理:⎰⎰∑⎰⎰=⋅=⋅s s q S D S Bd ,0d作为类比,反映自然界中没有与电荷相对应“磁荷”(或叫单独的磁极)的存在。

但是狄拉克1931年在理论上指出,允许有磁单极子的存在,提出:2n q q m =⋅ 式中q 是电荷、qm 是磁荷。

电荷量子化已被实验证明了。

然而迄今为止,人们还没有发现可以确定磁单极子存在可重复的直接实验证据。

如果实验上找到了磁单极子,那么磁场的高斯定理以至整个电磁理论都将作重大修改。

1982年,美国斯坦福大学曾报告,用直径为5cm 的超导线圈放入直径20cm 的超导铅筒,由于迈斯纳效应屏蔽外磁场干扰,只有磁单极子进入才会引起磁通变化。

运行151天,记录到一次磁通变化,但此结果未能重复。

据查阅科学出版社1994年出版的,由美国引力、宇宙学和宇宙线物理专门小组撰写的《90年代物理学》有关分册,目前已经用超导线圈,游离探测器和闪烁探测器来寻找磁单极子。

在前一种情况,一个磁单极子通过线圈会感应出一个阶跃电流,它能被一个复杂装置探测出来,但这种方法的探测面积受到线圈大小的限制。

游离探测器和闪烁探测器能做成大面积的,但对磁单极子不敏感。

现在物理学家们仍坚持扩大对磁单极子的研究,建造闪烁体或正比计数器探测器,相应面积至少为1000m 2。

并建造较大的,面积为100m 2量级的环状流强探测器,同时加强寻找陷落在陨石或磁铁矿中的磁单极子的工作。

2. 当带电粒子由弱磁场区向强磁场区做螺旋运动时,平行于磁场方向的速度分量如何变化动能如何变化垂直于磁场方向的速度分量如何变化参考解答:当带电粒子由弱磁场区向强磁场区做螺旋运动时,它所受到的磁场力有一个和前进方向相反的分量,这个分量将使平行于磁场方向的速度分量减小,甚至可使此速度分量减小到零,然后使粒子向相反方向运动(这就是磁镜的原理)。

当带电粒子由弱磁场区向强磁场区做螺旋运动时,由于平行于磁场方向的速度分量减小,因而与这个速度分量相关的动能也减小。

然而磁力对带电粒子是不做功的,粒子的总动能不会改变,因此,与垂直于磁场方向的速度分量相关的动能在此运动过程中将会增大,垂直于磁场方向的速度分量也相应地增大。

3. 电磁流量计是一种场效应型传感器,如图所示:截面矩形的非磁性管,其宽度为d 、高度为h ,管内有导电液体自左向右流动, 在垂直液面流动的方向加一指向纸面内的匀强磁场,当磁感应强度为B 时,测得液体上表面的a 与下表面的b 两点间的电势差为U ,求管内导电液体的流量。

参考解答:导电液体自左向右在非磁性管道内流动时, 在洛仑兹力作用下, 其中的正离子积累于上表面,负离子积累于下表面, 于是在管道中又形成了从上到下方向的匀强霍尔电场E ,它同匀强磁场B 一起构成了速度选择器。

因此在稳定平衡的条件下,对于以速度v 匀速流动的导电液体, 无论是对其中的正离子还是负离子,都有 B q dUqqE v == ∴流速,Bd U =v 液体流量.BUhhd Q ==v如果截面园形的非磁性管, B -磁感应强度;D -测量管内径;U -流量信号(电动势);v -液体平均轴向流速, L 测量电极之间距离。

霍尔电势U e(1) v kBL U e = k (无量纲)的常数,在圆形管道中,体积流量是:(2)42 v D Q π=把方程(1)、(2) 合并得:液体流量 BUkL D Q ⋅=42π或者BUK Q =,K 校准系数,通常是靠湿式校准来得到。

第15章 磁介质的磁化 一、选择题1(C),2(B),3(B),4(C),5(D) 二、填空题(1). -8.88×10-6 ,抗 . (2). 铁磁质,顺磁质,抗磁质. (3). 7.96×105 A/m , 2.42×102 A/m.(4). 各磁畴的磁化方向的指向各不相同,杂乱无章.全部磁畴的磁化方向的指向都转向外磁场方向. (5). 矫顽力大,剩磁也大;例如永久磁铁.(6). 磁导率大,矫顽力小,磁滞损耗低. 变压器,交流电机的铁芯等.三 计算题1. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.解:由安培环路定理: ∑⎰⋅=iI l Hd0< r <R 1区域: 212/2R Ir rH =π212R Ir H π=, 2102R IrB π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μI R1R 2R 3R 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 02. 一根很长的同轴电缆,由一导体圆柱(半径为a )和同轴的导体圆管(内、外半径分别为b ,c )构成,使用时,电流I 从一导体流出,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求∶导体圆柱内(r <a )和两导体之间(a <r <b )的磁场强度H 的大小.解∶由电流分布的轴对称性可知,在同一横截面上绕轴半径为r 的圆周上各点的B 值相等,其方向是沿圆周的切线方向.用H 的环路定律可求出.(1) r <a 222a r I r H ππ=π⋅ ∴ 22aIrH π= (2) a <r <b I r H =π⋅2, rIH π=23. 螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: ===l NI nI H /200 A/m ===H H B r μμμ0 1.06 T4. 一铁环的中心线周长为0.3 m ,横截面积为1.0×10-4 m 2,在环上密绕300匝表面绝缘的导线,当导线通有电流3.2×10-2 A 时,通过环的横截面的磁通量为2.0×10-6 Wb .求:(1) 铁环内部的磁感强度; (2) 铁环内部的磁场强度;(3) 铁的磁化率; (4) 铁环的磁化强度.解:(1) 2102-⨯==SB ΦT(2) n = 1000 m -1,H = nI 0=32 A/m(3) 相对磁导率 4970==HBr μμ ∴ 磁化率 χm = μr ­1 = 496(4) 磁化强度 M = χm H =1.59×104 A/m四 研讨题1. 顺磁质和铁磁质的磁导率明显地依赖于温度,而抗磁质的磁导率则几乎与温度无关,为什么?参考解答:顺磁质的磁性主要来源于分子的固有磁矩沿外磁场方向的取向排列。

相关主题