碳纳米管制备及应用展望在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。
碳纳米管是一种具有独特结构的一堆量子材料,由石墨碳原子层卷曲而成,管直径一般为几纳米到几十纳米,管壁厚度仅为几纳米,长度可达数微米。
由于拥有潜在的优越性能,碳纳米管无论在物理、化学还是在材料科学领域都将有重大发展前景。
比如在材料科学领域,碳纳米管的长度是直径的几千倍,被称为“超级纤维”,其性质随直径和螺旋角的不同有明显变化。
近年来,美国、日本、德国和中国等国家相继成立了纳米材料研究机构,使碳纳米管的研究进展随之加快,并在制备和应用方面取得了突破性进展。
一、碳纳米管的性能⑴力学性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。
碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。
对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。
碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。
碳纳米管是目前可制备出的具有最高比强度的材料。
若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。
碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。
目前在工业上常用的增强型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。
目前材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。
2000年10月,美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度高100倍,重量却只有后者的1/6到1/7。
碳纳米管因而被称“超级纤维”。
莫斯科大学的研究人员曾将碳纳米管置于1011 Pa的水压下(相当于水下18000米深的压强),由于巨大的压力,碳纳米管被压扁。
撤去压力后,碳纳米管像弹簧一样立即恢复了形状,表现出良好的韧性。
这启示人们可以利用碳纳米管制造轻薄的弹簧,用在汽车、火车上作为减震装置,能够大大减轻重量。
此外,碳纳米管的熔点是目前已知材料中最高的。
⑵导电性能碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。
碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。
理论预测其导电性能取决于其管径和管壁的螺旋角。
当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs 可以被看成具有良好导电性能的一维量子导线。
有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。
常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。
a1和a2分别表示两个基矢。
(n,m)与碳纳米管的导电性能密切相关。
对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这个方向上表现出金属性,是良好的导体,否则表现为半导体。
对于n=m的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。
⑶传热性能碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。
另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。
⑷优良的储氢性能碳纳米管的中空结构,以及较石墨(0.335nm)略大的层间距(0.343nm),是具有更加优良的储氢性能,也成为科学家们关注的焦点。
1997年,A. C. Dillon对单壁碳纳米管(SWNT)的储氢性能做了研究,SWNT在0℃时,储氢量达到了5%。
DeLuchi指出:一辆燃料机车行驶500km,消耗约31kg的氢气,以现有的油箱来推算,需要氢气储存的重量和体积能量密度达到65%和62kg/m3。
这两个结果大大增加了人们对碳纳米管储氢应用前景的希望。
⑸发射性能由于碳纳米管具有纳米尺度的尖端,有利于电子的发射,科学家们预言并证实了碳纳米管具有极好的场致电子发射效应。
单壁碳纳米管的直径通常仅有1~2nm,长度可以达到几十至上百微米,长径比很大;而且其结构完整性好,导电性很好。
化学性能稳定,具备了高性能场发射材料的基本结构特征。
但单壁碳纳米管的制备比较困难,迄今为止还没有单壁碳纳米管陈列制备成功的报导。
因此,目前在碳纳米管场致发射性能研究领域中以多壁碳纳米管的研究较为普遍和活跃。
⑹吸附性能由于碳纳米管具有较大的比表面积、特殊的管道结构以及多壁碳纳米管之间的类石墨层隙,使其成为最有潜力的氢储材料,在燃料电池方面有着重要的作用。
另外碳纳米管也是一种超强的二恶烷吸附剂,比活性炭高十倍,可用来除去水中的二恶烷。
碳纳米管的管状结构使其具有很强的毛细性能,利用该性能可以将金属或氧化物填充到开口的碳纳米管板中制成一堆的纳米材料,如纳米金属导线,这些低维的材料以及技术可能是微电子器件升级进入纳米时代。
二、碳纳米管的制备碳纳米管巨大的现实与潜在的应用市场,引起了产业对投资碳纳米管产品的高度热情与学术界对碳纳米管制备技术的不懈探索。
目前常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法),固相热解法、辉光放电法和气体燃烧法等以及聚合反应合成法。
电弧放电法是生产碳纳米管的主要方法和传统方法。
1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。
电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。
在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。
通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。
使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。
此外该方法反应消耗能量太大。
近年来有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。
激光蒸发法是在高温电阻炉中,由激光束蒸发石墨靶,采用钴及硫或Al2O3 载Mo 或La 等催化剂,反应得到绳索状的直径均匀的单壁碳纳米管,又称为激光烧灼法。
近年来发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。
这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态烃可以分解生成碳纳米管。
这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。
但是制得的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。
目前这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。
除此之外还有固相热解法等方法。
固相热解法是令常规含碳亚稳固体在高温下热解生长碳纳米管的新方法,这种方法过程比较稳定,不需要催化剂,并且是原位生长。
但受到原料的限制,生产不能规模化和连续化。
另外还有离子或激光溅射法。
此方法虽易于连续生产,但由于设备的原因限制了它的规模。
三、碳纳米管的应用1、复合材料由于碳纳米管具有优良的电学和力学性能,被认为是复合材料的理想添加相。
碳纳米管作为加强相和导电相,在纳米复合材料领域有着巨大的应用潜力。
碳纳米管聚合物复合材料是第一个已得到工业应用的碳纳米管复合材料。
由于添加了电导性能优异的碳纳米管,使得绝缘的聚合物获得优良的导电性能。
根据基体聚合物的不同,通常3%~5%加载量即可获得消除静点堆积的效果。
实验表明,2%碳纳米管的添加量可达到添加15%碳粉及添加8%不锈钢丝的导电效果。
由于低的加入量及纳米级的尺寸聚合物在取得良好的导电性能时,不会降低聚合物机械及的其它性能,并适合于薄壁塑料件的注塑成型。
这种导电聚合物塑料已在汽车燃料输送系统、燃料过滤器、半导体芯片和计算机读写头等要求防静电器件的内包装、汽车导电塑料另部件的制造等领域。
并已取得很好的效果,特别是在汽车导电塑料另部件的制造方面,比传统的制造工艺有明显的优势。
在简化工艺流程、产品表面光洁度彩色油漆静电喷涂等方面都达到了理想的效果。
是静电喷涂技术的发展方向。
为了充分利用碳纳米管高弹性模量和抗拉强度,这一优异的机械性能碳纳米管聚合物复合材料作为结构材料使用的研究正在世界范围内加紧进行。
当前主要的挑战在于,将碳纳米管均匀地扩散到基体材料中,使得碳纳米管和基体材料充分粘合,达到有效的应力传递,防止多壁碳纳米管层间滑移及单壁碳纳米管束中管间的相对位移。
实验表明,在充分扩散的情况下,在环氧树脂中只要0.1-0.2%的单壁碳纳米管就能达到10倍于直径200nm气相法生长碳纤维加入量的效果。
研究还发现,2%的单壁碳纳米管添加量,可导致聚合物韦氏硬度提高3.5倍。
1%的单壁碳纳米管添加量,可导致热传导性增加一倍。
1%的多壁碳纳米管添加量,使聚苯乙烯的弹性模量和断裂应力分别提高42%和25%。
此外,碳纳米管聚合物复合材料用于电磁辐射屏蔽材料及微波吸收材料【37】的研究也取得重要进展,有望在人体电磁辐射防护,移动电话、计算机、微波炉等电子电器设备的电磁屏蔽方面广泛的应用潜力碳纳米管优异的微波吸收性能可用于隐身材料的制造,在飞机、导弹、火炮、坦克等军事装备隐形等军事领域里有巨大应用价值。
军事大国正在加紧研究开发国外有公司宣布开发出碳纳米管聚合物复合微波吸收材料2、电化学器件碳纳米管具有非常高的比表面积、导电性能和良好的机械性能,是电化学领域所需的理想材料。
碳纳米管电容器具有非常好的放电性能,能在几毫秒的时间内将所存储的能量全部放出,这一优越性能已在混合电力汽车中开始实验使用。
由于可在瞬间释放巨大电流,为汽车瞬间加速提供能量,同时也可用于风力发电系统稳定电压和小型太阳能发电系统的能量存储。
锂离子电池是碳纳米管应用研究领域之一。
碳纳米管锂离子电池容量大,放电速度快,充放电容量达到1000mA.h/g,大大高于石墨(372mA.h/g)和球磨石墨粉(708mA.h/g)。