微电解填料
在难降解工业废水的处理技术中,微电解技术正日益受到重视,并已在工程实际中。
[1]
废水的铁内电解法的原理非常简单,就是利用铁-碳颗粒之间存在着电位差而形成了无数个细微原电池。
这些细微电池是以电位低的铁成为阳极而腐蚀,电位高的碳做阴极,在含有酸性电解质的水溶液中发生电化学反应的。
反应的结果是铁受到腐蚀变成二价的铁离子进入溶液。
对内电解反应器的出水调节PH值到9左右,由于铁离子与氢氧根作用形成了具有混凝作用的氢氧化亚铁,它与污染物中带微弱负电荷的微粒异性相吸,形成比较稳定的絮凝物(也叫铁泥)而去除。
如果要让铁碳床有分解有机大分子能力,一般需要加入过氧化氢,酸性废水与铁反应生成亚铁离子,亚铁离子与过氧化氢形成Fenton试剂,生成羟基自由基具有极强的氧化性能,将大部分的难降解的大分子有机物降解形成小分子有机物等。
同样,反应要在酸性的条件下才能进行。
根据工程试验,铁碳床微电解刚开始的效果很理想,特别是处理酸性的有机废水。
传统上微电解工艺所采用的微电解材料一般为铁屑和木炭,使用前要加酸碱活化,使用的过程中很容易钝化板结,又因为铁与炭是物理接触,之间很容易形成隔离层使微电解不能继续进行而失去作用,这导致了频繁地更换微电解材料,不但工作量大成本高还影响废水的处理效果和效率。
另外,传统微电解材料表面积太小也使得废水处理需要很长的时间,增加了吨水投资成本,这都严重影响了微电解工艺的利用和推广。
新型催化活性微电解填料有具有高电位差的金属合金融合催化剂并采用高温微孔活化技术冶炼生产而成,具有铁炭一体化、熔合催化剂、微孔架构式合金结构、比表面积大、比重轻、活性强、电流密度大、作用水效率高等特点。
作用于废水,可高效去除COD、降低色度、提高可生化性,处理效果稳定,可避免运行过程中的填料钝化、板结等现象。
新型填料技术特点:
(1)阴阳极及催化剂通过高温冶炼形成铁炭一体化,保证“原电池”效应持
续作用。
不会像铁炭物理混合组配那样容易出现阴阳极分离,影响原电池反应。
(2)填料通过高温冶炼形成架构式微孔合金结构,比表面积大,活性强,不
钝化、不板结,阴阳极针对不同废水进行配比,对废水处理提供了更大的电流密度和更好的微电解反应效果,反应速率快,一般工业废水只需要30-60分钟,长期运行稳定有效。
(3) 技术参数:
比重:1.0吨/立方米,比表面积:1.2 平方米/克,空隙率: 65% ,物理强度:≧1000KG/CM
化学成分:铁75-85%,碳10-20%,催化剂5%
(4) 规格:1cm×3cm (大小可定制)
新型活性催化微电解填料与传统型微电解填料对比:
新型微电解填料传统填料
物理结构多孔架构式结构,(微观结构
见上图),粒度10-30mm,比
表面积1.2M2/g,比重1.0g/cm
3,提供更大的电流密度和接
触面积,效率更高,反应时间
缩短
无规则,实心颗粒或粉末状,单
位空间处理能力较低,比重约
4.0左右,需更长的反应时间,
易形成沟流
阴阳极结合合金结构,阴阳极形成合金一
体化,“原电池“持续高效,
填料表面伴随着电荷的转移
更新快,避免填料的钝化
铁屑木碳物理混合,阴阳极很容
易被反应生成物或水体夹杂物
隔离分开导使电池效率下降,直
至失去作用,最终导致填料钝化
板结
引入催化剂针对不同废水水体引入不同
催化剂,会降低废水有机污染
物的降解能,可使微电解对有
机物的降解效率更高,本填料
针对不同废水引入了不同的
及适量的催化剂
——
处理效果一般反应只需30-60分钟,CO
D去除率30%-80%,稳定运行
反应需1小时以上甚至数小时,
反就效果不稳定,容易钝化失效
使用成本比重约1.0吨/立方,每方水
处理成本约0.4—0.6元。
比重约3.5~4.0吨/立方,不含
催化剂,约3000元/吨,约1.0~
1.2万元/立方,这还不包括筛
分出来的废渣,如果加上筛分出
的废渣成本,成本至少1.2万
元/每立方以上
铁碳微电解填料
概述:铁碳微电解填料
微电解技术是目前处理印染、电镀、造纸、医药、硝基苯、苯胺、有机硅、印刷线路板、焦化、畜牧、双氧水化工、石油化工、橡胶助剂化工以及含苯环化工废水的一种理想工艺。
微电解技术在去除高浓度废水的色度和降低COD方面有其独到之处。
对于难降解可生化性差的废水,由我公司生产的新型微电解填料可以将难降解化合物破环断链,并且,将其转化为容易降解的物质,提高废水的可生化性。
因此利用微电解技术配合催化氧化法,是处理高浓度废水的有效途径。
对于高浓度有机废水,可以利用微电解+芬顿技术,高效降低废水的COD。
最重要的一点,由我公司研发的新型微电解填料,突破了传统填料板结钝化的瓶颈,使得铁碳微电解技术被冰封之后重新得以推广。
该填料通过1050摄氏度的严格控温技术将铁及金属催化剂与炭烧结在一起形成架构式铁炭结构。
①此结构铁与炭永远是一体,不会像铁炭组配组合容易出现铁与炭分离,影响原电池反应。
②铁炭一体可降低原电池反应的电阻,从而提高电子的传递效率,提高处理效率。
③铁炭一体可以避免钝化的产生,架构式的铁炭结构可以避免钝化。
包容架构式微电解技术是铁炭微电解技术的一次技术革命。
广泛应用将为化工等行业的发展带来新的生机。
铁炭包容式微电解技术采用固定流化床运行方式,其操作维护方便,运行安全可靠。
二、工作原理:铁碳微电解填料厂家技术
● 一般原理:铁炭微电解是基于电化学中的原电池反应。
当铁和炭浸入电解质溶液中时,由于Fe和C之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场。
阳极反应产生的新生态二价铁离子具有较强的还原能力,可使某些有机物还原,也可使某些不饱和基团(如羧基—COOH、
偶氮基-N=N-)的双键打开,使部分难降解环状和长链有机物分解成易生物降解的小分子有机物而提高可生化性。
此外,二价和三价铁离子是良好的絮凝剂,特别是新生的二价铁离子具有更高的吸附-絮凝活性,调节废水的pH可使铁离子变成氢氧化物的絮状沉淀,吸附污水中的悬浮或胶体态的微小颗粒及有机高分子,可进一步降低废水的色度,同时去除部分有机污染物质使废水得到净化。
阴极反应产生大量新生态的[H]和[O],在偏酸性的条件下,这些活性成分均能与废水中的许多组分发生氧化还原反应,使有机大分子发生断链降解,从而消除了有机废水的色度,提高了废水的可生化性。
铁炭原电池反应:
阳极:Fe - 2e → Fe2+ E (Fe/Fe2+) = 0.44V
阴极:2H++ 2e → H2 E (H+/H2) = 0.00V
当有氧存在时,阴极反应如下:
O2+ 4H++ 4e → 2H2O E (O2) = 1.23V
O2+ 2H2O + 4e → 4OH- E (O2/OH-) = 0.41V
● 一般微电解反应为:铁原子与炭原子是紧挨着或分开而形成原电池反应。
这种铁炭接触不利于电子的转移,电荷效率较低,因此废水中有机物的去除效率一般也较低。
同时当铁炭一旦分层将更不利于有机物的去除。
● 铁炭包容式微电解反应为:铁原子与炭原子是相互包容组成架构而形成的原电池反应。
这种铁炭接触不存在铁与炭的分层问题,因此更有利于电子的转移,电荷效率较高,废水中有机物的去除效率也较高。
三、产品形状:铁碳微电解填料厂家技术
项目外观粒径有效成分含铁量强度
微电解填料扁圆1×3(cm)铁+碳+贵金属
催化剂
≥75%1000kg/cm2。