2-1 何谓构件?何谓运动副及运动副元素?如何分类的?(1)构件:机械中每个独立运动的单元体。
(2)运动副:由两构件直接接触而组成的可动连接。
运动副元素:两构件上能够参加接触而构成运动副的表面。
(3)分类方法:1、根据约束的数目分类为Ⅰ级副、Ⅱ级副、Ⅲ级副、Ⅳ级副、Ⅴ级副。
2、根据两构件的接触形式:分为低副、高副。
3、根据两构件的相对运动形式可分为:转动副、移动副、螺旋副、球面副等。
4、也可分为:平面运动副和空间运动副。
2-2 机构的运动简图有何用处?他能表示出原机构哪些方面的特征?答:1、机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,而且也可用来进行动力分析。
2、运动简图:可以正确的表达出机构的组成构件和构件间的连接运动副,即机构的组成形式。
2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况?答:1、自由度与原动杆的数目相等。
2、当少时:机构的运动将不确定。
当多时:将导致机构中最薄弱的环节损坏。
3、少的我们称之为欠驱机构:它遵循最小阻力定律,所以人们制造了很多欠驱机构或装置,并增加机构的灵活性和自适性。
多的称之为冗驱机构:若各部分原动件的运动彼此协调,则各原动件将同心协力来驱动从动件,从而增大了传动的可靠性,减小尺寸和重量,并利用克服机构处于某可异位形时受到的障碍。
2-6 在图2-20所示的机构中,在铰链C、B、D处,被连接的两构件上连接点的轨迹都是重合的,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何一处,被连接的两构件上连接点的轨迹重合是由于其他两处的作用,所以只能算一处。
2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么?答:1、为使平面低副机构结构分析和运动分析的方法适用于所有平面机构,便于对含有高副的平面机构进行研究,要进行“高副低代”。
2、“高副低代”的条件:(1)代替前后机构的自由度不变。
(2)代替前后机构的瞬时速度和瞬时加速度不变。
3-1 何谓速度多边形和加速度多边形?他们有什么特点?答:1、在用矢量方程法分析机构的运动时,首先根据合成原理列出机构的速度(加速度)矢量方程,然后按方程选定比例尺作图。
所做的图即称为:速度(加速度)多边形。
2、在它们的多边形中,由极点P向外放射的的矢量,代表构件上相应点的绝对速度(加速度),而连接两绝对速度(加速度)末端的矢量,则代表构件上相应两点的相对速度(加速度)。
而相对加速度又可分为法向加速度和切向加速度。
3-2 何谓速度影像和加速度影像?利用这一原理进行构件上某点的速度(加速度)图解时,应具备哪些条件?还应注意什么问题?答:1、将同一构件各点间的相对速度(加速度)矢量构成的图形称为该构件图形的速度(加速度)影像。
2、条件是要知道构件上两点的速度或加速度。
才可以用速度(加速度)影像原理来求出该构件上其他点的速度或加速度。
3、还应注意:这一原理只适用于构件,而不是整个机构。
3-10 何谓三心定理?何种情况下的瞬心需用三心定理来确定?答:1、三心定理:三个彼此做平面运动的构件的三个瞬心一定在一条直线上。
2、对于求不是通过运动副直接相连两构件的瞬心,可以借助三心定理来求。
4-1 何谓机构的动态静力分析?对机构进行动态静力分析的步骤?答:1、动态静力分析指的是将惯性力视为一般外力作用在相应构件上,再按照静力学分析方法进行分析。
2、步骤:1 计算各构件的惯性力。
2 确定机构动态静力学的起始构件,并进行杆组的拆分(有高副的要高副低代)。
3 从离起始件最远的杆组进行计算,最后再推算到起始构件。
4 对机构的一系列位置进行动态静力计算,求出各运动副中的反力和平衡力的变化规律。
如要考虑摩擦力,需要在上诉的过程中加入摩擦力后反复的计算而得,此方法叫做逐步逼近法。
4-2 何谓质量代换法?进行质量代换的目的何在?动代换和静待换各应满足什么条件?各有何优缺点?静待换中两代换点与质心不在一条直线上可以吗?答:1、质量代换法:将构件的质量,按一定的条件集中于构件上某几个点的假想集中质量来代替的方法。
2 、目的:质量代换法只需求各集中质量的的惯性力,而无需求惯性力偶矩,从而达到简化惯性力的目的。
3、动代换满足的条件:(1)代换前后构件的质量不变。
(2)代换前后质心的位置不变。
(3)代换前后构件对质心轴的转动惯量不变。
4、优点:代换后,构件的的惯性力和惯性力偶都不会发生变化。
缺点:一个点确定后,另一个点的位置不能随便选择,给工程计算带来了不便。
静代换满足的条件:(1)代换前后质量不变。
(2)代换前后质心的位置不变。
优点:使用简单,常被工程上所用。
缺点:代换后,构件的惯性力偶会发生一定的误差。
4、静代换时,两代换点与构件的质心必在一条直线上,因为俩代换点的质心在两代换的连线上,如果两代换点不与质心在一条直线上,则无法满足代换前后的质心位置不变这一条件。
4-3 何谓平衡力与平衡力矩?平衡力是否总为驱动力?答:1、平衡力与平衡力矩:与作用在构件上所有已知外力和惯性力相平衡的,作用在构件上上的未知外力或力矩。
2、平衡力不总是驱动力,驱动力是驱使机械运动的力。
平衡力与已知外力相平衡,可以驱使外力运动,成为驱动力,也可以阻碍机械运动成为阻抗力。
4-4 构件组的静定条件是什么?基本杆件组都是静定条件吗?答:1、条件:3n=2pl+ph。
其中n为构件数目,pl为低副数,ph为高副数。
2、基本杆件组都符合3n-2pl-ph=0,所以基本杆组都是静定杆组。
4-5 采用摩擦系数f和当量摩擦角Ψv的意义何在?当量摩擦系数fv与实际摩擦系数f不同,是应为两物体接触面稽核形状改变,从而引起的摩擦系数改变的结果吗,对吗?答:1、目的是用于简化计算,统一计算公式。
2、不对,不同。
是因为两物体接触表面几何形状的改变,引起的摩擦力大小的变化,f 与构件的材料有关,而与形状无关。
Fv是为了计算简单,把运动副元素几何形状对运动副摩擦力的影响计入后的摩擦系数,不是真正的f。
4-6 在转动副中,无论什么情况,总反力否始终与摩擦圆相切的论断是否正确?为什么?答:不正确,只有轴颈与轴承有相对滑动时,轴承对轴颈的总反力才始终切与摩擦圆。
无滑动就无摩擦力,就没有总反力。
5-1 眼镜用小螺钉与其他尺寸的螺钉相比,为什么更易发生自动松脱现象?答:由于小螺钉的螺纹升角通常大于大螺钉的螺纹升角,故用小螺钉来紧固眼镜通常不具备自锁性或自锁性很差,因此,更易发生自动松脱现象。
5-2 当作用在转动副中轴颈的外力为一单力,并分别作用在摩擦圆之内,之外,或相切时,轴颈将做什么运动?当作用在转动副中轴的外力为外力偶时,会发生自锁吗?答:1、当在作用在摩擦圆之外时,驱动力矩大于摩擦力矩,轴颈将做加速转动。
当切于摩擦圆时,驱动力矩等于摩擦力矩,轴颈处于自锁临界状态,轴颈将做等速转动(原先就有转动运动),或静止不动。
当割于摩擦圆时,驱动力矩小于摩擦力矩,轴颈发生自锁。
2、会,当M外< Mf时发生自锁5-3 自锁机械根本不能运动对吗?试举1-3利用自锁的例子。
答:错误,机械本身是可以运动的,只有满足相应的自锁条件的情况下,才会发生自锁。
螺旋千斤顶斜面压榨机偏心类器具。
6-1 什么是静平衡?什么是动平衡?各自至少需要几个平衡表面?静平衡和动平衡的力学条件各是什么?答:1、对于轴向尺寸很小的盘类转子(b/D<0.2),其所有质量都看以看做在垂直于轴线的同一平面内,其不平衡的原因是其质心不在回转轴线上,回转时会产生离心惯性力。
对于这种不平衡只要将其质心移至回转轴线上,就可达到平衡状态。
这种移动质心的平衡方法可在转子静止的状态下进行,称静平衡。
静平衡需要一个面。
条件:转子所增加的或减少的平衡的质量与偏心质量所产生的离心惯性力的矢量和为零,或其质径积的矢量和为零。
ΣF=ΣFi+Fb=0 Σmiri+mbrb=02、对于轴向尺寸较大的转子(b/D>0.2)其质量就不能认为在垂直于轴线的平面啦,回转时各偏心质量产生的离心惯性力是一空间力系,将形成惯性力偶,由于这种力偶只有在转子转动时才会表现出来,故需要在转子转动时达到平衡,所以称之为动平衡。
动平衡至少需要两个平衡面。
条件:各偏心质量与平衡质量所产生的惯性力矢量和为零,且其惯性力矩矢量和也为零。
FI=0 MI=0.6-26-3 既然动平衡的构件一定是静平衡的,为什么一些制造精度不高的构件在做动平衡前要先答:由于这些构件制造精度不高,如果静不平衡,在做动平衡的时候很产生很大的离心力,严重是甚至会破坏机器。
6-4为什么做往复运动的构件和作平面复合运动的构件不能在构件的本身平衡,而必须在基座上平衡?基座上平衡的实质是什么?答:1、因为对于机构中作往复运动或平面复合运动的构件,其各自运动的构件所产生的惯心是难以琢磨的,所以不能再构件的本身设法平衡,当机构运动时,其各动构件所产生的惯性力可以合成一个通过机构质心的的总惯力和一个总惯性力偶,这两部分力,全部由机座承受。
2、机构在机座上平衡的实质就是消除机构在机座上引起的动压力,设法平衡这个总惯性力和总惯性力偶距,使作用于机构质心的总惯性力FI和总惯性力偶距Mi分别为零。
7.1等效转动惯量和等效力矩各自的等效条件是什么?等效转动惯量的等效条件为:具有等效转动惯量Je()的等效构件动能等于原机械系统的动能等效力矩的等效条件为:作用于等效构件上的等力矩Me()的瞬时功率等于作用在原机械系统上的所有外力在同一瞬时的功率和7.2在什么情况下机械才会做周期性速度波动?速度波动有何危害?如何调节?作用在机械上的驱动力和阻抗力通常是变化的,在某一瞬时,其所作的驱动功和阻抗功一般是不相等,即出现盈功或亏功,从而使机械的速度增加或减少,产生速度波动。
若等效力矩Med,Mer的变化是周期性,在Med,Mer和等效转动惯量J变化的公共周期内,驱动功等于阻抗功,机械动能增量为零,则等效构件的角速度在公共周期的始末是相等的,机械运转的速度波动将呈现周期性。
速度波动会导致在运动副中产生附加的动压力,并引起机械的振动,从而降低机械的寿命、效率和工作质量。
对于周期性速度波动,在等效力矩一定的情况下,加大等效构件的转动惯量,将会使等效构件的角加速度减小,即可以使机构的运转趋于均匀。
因此,对于周期性速度波动可以通过安装具有很大转动惯量的回转构件——飞轮来调节。
对于非周期性速度波动,其调节就是设法使驱动力矩和阻力矩恢复平衡关系,对于选用电动机作为原动件的机械,其本身有自调性,即本身就可以使驱动力矩和阻力矩协调一致,能自动地重新建立能量平衡关系,而对于蒸汽机、内燃机等原动件的机械,其调节非周期性速度波动的方法是安装调速器来实现7.3飞轮为什么可以调速?能否利用飞轮来调节非周期性速度波动,为什么?飞轮之所以能调速,是利用了他的储能作用,这是由于飞轮具有很大的转动惯量、因而要是其转速发生变化就要较大的能量当机械出现盈功,飞轮轴的角速度只作微小上升,即可将多余能量吸收存储起来,而当机械出现亏功时,机械运转速度减慢,飞轮又可将其储存的能量释放,以弥补能量的不足,而其角速度只作小幅度下降非周期性速度波动往往靠安装调速器来调节,而不能利用飞轮。