精馏塔精馏塔(fractionating column)是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
有板式塔与填料塔两种主要类型。
根据操作方式又可分为连续精馏塔与间歇精馏塔。
蒸气由塔底进入。
蒸发出的气相与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向气相中转移,气相中的难挥发(高沸点)组分不断地向下降液中转移,气相愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,从而达到组分分离的目的。
由塔顶上升的气相进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。
塔底流出的液体,其中的一部分送入再沸器,加热蒸发成气相返回塔中,另一部分液体作为釜残液取出。
精馏原理 (Principle of Rectify)蒸馏的基本原理是将液体混合物多次部分气化和部分冷凝,利用其中各组份挥发度不同(相对挥发度,α)的特性,实现分离目的的单元操作。
蒸馏按照其操作方法可分为:简单蒸馏、闪蒸、精馏和特殊精馏等。
超重力精馏塔近年来出现的超重力精馏技术,利用高速旋转产生的数百至千倍重力的超重力场代替常规的重力场,极大地强化气液传质过程,将传质单元高度降低1个数量级。
从而使巨大的塔设备变为高度不到2米的超重力精馏机,达到增加效率、缩小体积的目的。
超重力精馏改变了传统的塔设备精馏模式,只要在室内厂房里就可以实现连续精馏过程。
对社会的发展而言可节省钢材资源,延长地球资源的使用年限;对企业的发展而言,可以节约场地与空间资源,减少污染排放,提高产品质量,改善经营管理模式,降低生产劳动强度,增加生产的安全性。
一、实验目的1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法;2. 了解板式塔的结构,观察塔板上气-液接触状况;3. 测定全回流时的全塔效率及单板效率。
4. 测定全塔的浓度分布。
二、摘要在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶主板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
对于双组分混合液的蒸馏,若已知汽液平衡数据,测得塔顶流出液组成X、釜残液组成W X,液料组成F X及回流比R和进料状D态,就可用图解法在y x 图上,或用其他方法求出理论塔板数N。
塔的全塔效率T E为理论塔板数与实际塔板数N之比。
T精馏塔的单板效率E可以根据液相通过测定塔板的浓度变M化进行计算。
本实验在板式精馏塔全回流的情况下,通过测定乙醇丙醇体系混合液在精馏塔中的传质的一些参数,计算精馏塔的总板效率和某几块板的单板效率(液相单板效率),分析该塔的传质性能和操作情况。
三、实验原理在板式精馏塔中,混合液的蒸汽逐板上升,回流液逐板下降,气液两相在塔板上接触,实现传质、传热过程而达到分离的目的。
如果在每层塔板上,上升的蒸汽与下降的液体处于平衡状态,则该塔板称之为理论塔板。
然而在实际操做过程中由于接触时间有限,气液两相不可能达到平衡,即实际塔板的分离效果达不到一块理论塔板的作用。
因此,完成一定的分离任务,精馏塔所需的实际塔板数总是比理论塔板数多。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
本实验处于全回流情况下,既无任何产品采出,又无原料加入,此时所需理论板最少,又易于达到稳定,可以很好的分析精馏塔的性能。
影响塔板效率的因素很多,大致可归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构以及塔的操作条件等。
由于影响塔板效率的因素相当复杂,目前塔板效率仍以实验测定给出。
板效率是体现塔板性能及操作状况的主要参数,有两种定义方法。
(1) 总板效率Ee N E N =式中:——总板效率;N ——理论板数 (不包括塔釜);N e ——实际板数(2) 单板效率ml E1*1n n ml n n x x E x x ---=-式中:mlE ——以液相浓度表示的单板效率; n x ,1n x -——第n 块板和第n-1块板的液相浓度;*n x ——与第n 块板气相浓度相平衡的液相浓度。
总板效率与单板效率的数值通常由实验测定。
单板效率是评价塔板性能优劣的重要数据。
物系性质、板型及操作负荷是影响单板效率的重要参数。
当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。
总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。
实验所选用的体系是乙醇—正丙醇,这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,通过使用阿贝折光仪来分析料液的折射率,从而得到浓度。
在实验温度下,该混合料液的折射率与质量分数(以乙醇计)的关系如下:58.206842.1941D m n =- 式中: ——料液的质量分数(0<m <1);n D ——料液的折射率(1.3560<n D <1.3577)。
四、实验装置流程图及主要测试仪器表图1、精馏实验流程1.塔顶冷凝器 2.塔身 3.视盅4.塔釜 5.控温棒6.支座 7.加热棒 8.塔釜液冷却器9.转子流量计 10.回流分配器11.原料液罐 12.原料泵 13.缓冲罐14.加料口 15.液位计设备参数:(1)精馏塔-----精馏塔采用筛板结构,塔身用直径Φ57×3mm的不锈钢管制成,设有一个进料口,共8块塔板,其中第2-6块塔板设有样品采出口;塔板用厚度1mm的不锈钢板,板间距为80mm;板上开孔率为4%,孔径是1.5mm,孔数为43,孔间距为6mm;孔按正三角形排列;降液管为Φ14×2mm的不锈钢管;堰高是10mm,底隙高度为4mm。
(2)蒸馏釜为Φ108×4×400mm不锈钢材质立式结构,用一支1KW的SRY-2-1型电热棒进行加热,一支300w的电热棒恒温加热,并由仪表柜上的电压、电流表加以显示。
釜上有温度计和压力计,以测量釜内的温度和压力。
(3)冷凝器-----采用不锈钢蛇管式冷凝器,换热面积0.7m2。
管内走物料,管外走冷却。
(4)原料液罐----规格为Φ300×350×3mm,不锈钢材料制造,装有液面计,以便观察槽内料液量。
(5)高位贮槽----为Φ300×350×3mm不锈钢材料容器,顶部有放空管及与泵相连的入口管,下部有向塔供料的出口管。
(6)原料----进料为乙醇-丙醇系统,乙醇的摩尔分率为0.3。
五、实验操作要点(1)对照流程图,先熟悉精馏过程的流程,并搞清楚仪表柜上按钮与各仪表相对应的设备与测控点。
(2)全回流操作时,在原料储罐中配置含量20℅~25℅(摩尔分数)左右的乙醇—正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。
(3)启动塔釜加热及塔身伴热,使加热电压达到最大,观察塔板上的气液接触情况,当塔顶出现回流液且塔顶温度保持稳定不变时,全回流15分钟,使其充分传质,再取液测量。
(4)同时在塔顶塔釜及相邻两块塔板上取样,用阿贝折光仪进行分析,分别测取数据,重复两三次,当折光率误差小于0.001时,记录各组数据。
六、实验数据处理1、40℃料液的质量分数与折光率的关系 :58.206842.1941D m n =-2、全回流状况下实验测得数据并经过计算机数据处理得到下表:实验数据处理结果折光率平均值:3573.123580.13565.1=+= D n 乙醇质量分数:934.03573.1*194.422068.28*194.422068.58=-=-=D n m乙醇摩尔分数:948.060934.0146934.046934.0=-+=x 3、全回流计算⑴逐板计算:实验数据乙醇——正丙醇气液相平衡数据由数据计算得塔顶、塔釜组成:塔顶组成948.0=D x ,塔釜组成228.0=W x ,全回流的情况下的操作线与对角线重合,即1n n y +=x由乙醇——正丙醇气液相平衡数据经过数据拟合可得平衡方程320.56770.1290.56450.0004x y y y =-+-将489.0y 1==D x 代入平衡线320.56770.1290.56450.0004x y y y =-+-,得899.0004.0948.0*5645.0948.0*129.0948.0*5677.0231=-+-=x 再将.8990y 12==x 代入平衡线,得812.0004.0899.0*5645.0899.0*129.0899.0*5677.0232=-+-=x 同理,依次逐板计算,可得下表可得,228.0751.06=<=w x x ,则理论板数N T =6块⑵求总板效率及单板效率:总板效率:%5.27100%86100%N N E P T T =⨯=⨯= 单板效率:由步骤2计算得第四、五块板上的组成749.0 278.054==x x由平衡线的拟合公式可计算得:与第5块板的气相相平衡的液相组成.6960)x (f')y (f'455===*x 则第5块板的液相单板效率%41.59%100696.0728.0749.0827.0%10054545,L =⨯--=⨯--=*x x x x E m 七、实验结果:理论板数的示意图将全回流的逐板计算结果分别与平衡线、对角线画在坐标系中,如图所示。
八、实验结论比较及误差分析:⑴全塔效率:对于一个特定的物系和塔板结构,由于塔的上下部气液两相的组成、温度不同,所以物性也不同,又由于塔板的阻力,使塔的上下部分的操作压强也不同,这些因素使每个塔板的效率不同.所以我们需要用一种全面的效率来衡量整个塔的分离效果的高低. 公式e NE N 就是一种综合的计算方法.全塔效率反映了全塔各塔板的平均分离效果,它不单与影响点效率、板效率的各种因素有关,而且把板效率随组成等的变化也包括在内.所有的这些因素E 的关系难以搞清,所以我们只能用实验来测定.0.00.20.40.60.8 1.00.00.20.40.60.81.0YX这就是实验用塔的全塔效率,由于实验和作图中存在误差,这个值是有误差的。
0.625这个数值还是比较低的,说明实验用塔的效率还是可以进一步提高的。
由于实验存在误差,我们只是大致的对实验用塔进行粗略的评价,经过实验我们分析了影响塔板效率的一些因素,归结为:流体的物理性质(如粘度、密度、相对挥发度和表面张力等)、塔板结构的因素相当复杂,以及塔的操作条件等。
⑵单板效率:单板效率是评价塔板性能优劣的重要数据.物系的性质、板型及操作负荷是影响单板效率的重要因素.当物系板型确定后,可通过改变气液的负荷达到最高的板效率;对于不同的板型可以在保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣.E ml (4)=( 3X -4X ) / (3X -4X )=0.59;我们这里应用默弗里板效率公式计算的。