材料化学论文钛Titanium姓名:胡群学号:1106000135系别:化学与环境科学系专业:化学年级:11 级指导教师:林德娟2013 年11 月25 日前言金属铁、镁、铝、铅、锌、铜等广泛应用,为人们熟悉。
然而近年来,随着科学技术的飞速发展,上述金属已不能满足现代科学技术的需要。
钛却闪烁着时代的光辉,成为金属中的新秀。
为了回顾并更好的利用金属钛,在本论文中,依次介绍了钛的发展史,结构式,制备方法,表征,应用及发展前景。
一、发展史钛是一种化学元素,化学符号Ti,原子序数22,是一种银白色的过渡金属,其特征为重量轻、强度高、具金属光泽,亦有良好的抗腐蚀能力(包括海水、王水及氯气)。
由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,被美誉为“太空金属”。
1791年英国牧师W.格雷戈尔(Gregor)在黑磁铁矿中发现了一种新的金属元素。
1795年德国化学家M.H.克拉普鲁斯(Klaproth)在研究金红石时也发现了该元素,并以希腊神Titans命名之。
1910年美国科学家M.A.亨特(Hunter)首次用钠还原TiCI:制取了纯钛。
1940年卢森堡科学家W.J.克劳尔(kroll)用镁还原TiCl:制得了纯钛。
从此,镁还原法(又称为克劳尔法)和钠还原法(又称为亨特法)成为生产海绵钛的工业方法。
美国在1948年用镁还原法制出2t海绵钛,从此达到了工业生产规模。
随后,英国、日本、前苏联和中国也相继进入工业化生产,其中主要的产钛大国为前苏联、日本和美国。
钛是一种新金属,由于它具有一系列优异特性,被广泛用于航空、航天、化工、石油、冶金、轻工、电力、海水淡化、舰艇和日常生活器具等工业生产中,它被誉为现代金属。
金属钛生产从1948年至今才有半个世纪的历史,它是伴随着航空和航天工业而发展起来的新兴工业。
它的发展经受了数次大起大落,这是因为钛与飞机制造业有关的缘故。
但总的说来,钛发展的速度是很快的,它超过了任何一种其他有色金属的发展速度。
这从全世界海绵钛工业发展情况可以看出:海绵钛生产规模60年代为60kt/a,70年代为1lOkt/a,80年代为130kt/a,到1992年已达140kt/a。
实际产量1990年达到历史最高水平,为105kt/a。
进入90年代后,由于军用钛量减少和俄罗斯等一些国家抛售库存海绵钛,使前几年市场疲软。
1995年钛的市场开始回升,主要由于B777等民用飞机和高尔夫球杆等民用钛量大幅度增加,1996年钛的需求量达到一个新的高点。
专家预测今后几年内钛的需求量将继续较大幅度增长。
目前妨碍钛应用的主要原因是价格贵。
可以预料,随着科学技术的进步和钛生产工艺的不断完善、扩大企业的生产能力和提高管理水平、进一步降低钛制品的成本,必然会开拓出更广泛的钛市场。
二、钛的结构式钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。
99.5%工业纯钛的性能为:密度ρ=4.5g/立方厘米,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。
钛是同素异构体,熔点为1668℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方晶格结构,称为β钛。
三、制备方法从采矿到制成钛材的工艺过程的主要步骤为:钛矿->采矿->选矿->太精矿->富集->富钛料->氯化->粗TiCl4->精制->纯TiCl4->镁还原->海绵钛->熔铸->钛锭->加工->钛材或钛部件工业上常用硫酸分解钛铁矿的方法制取二氧化钛,再由二氧化钛制取金属钛。
浓硫酸处理磨碎的钛铁矿(精矿),发生下面的化学反应:FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2OFeTiO3+2H2SO4 == TiOSO4+ FeSO4+2H2O为了除去杂质Fe2(SO4)3,加入铁屑,Fe3+还原为Fe2+,然后将溶液冷却至273k以下,使得FeSO4·7H2O(绿矾)作为副产品结晶析出。
Ti(SO4)2和TiOSO4水解析出白色的偏钛酸沉淀,反应是:Ti(SO4)2+ H2O == TiOSO4+ H2SO4TiOSO4+2H2O == H2TiO3+ H2SO4锻烧偏钛酸即制得二氧化钛:H2TiO3==TiO2+ H2O工业上制金属钛采用金属热还原法还原四氯化钛。
将TiO2(或天然的金红石)和炭粉混合加热至1000~1100k,进行氯化处理,并使生成的TiCl4,蒸气冷凝。
TiO2+2C+2Cl2= TiCl4+2CO在1070k 用熔融的镁在氩气中还原ticl4可得多孔的海绵钛:TiCl4+2Mg=2MgCl2+Ti四、钛的应用钛能与铁、铝、钒或钼等其他元素熔成合金,加入不同的合金元素后,钛合金可分成α-、β-和α+β三类。
造出高强度的轻合金,在各方面有着广泛的应用,包括航天(噴氣發動機、导弹及航天器)、军事、工业程序(化工与石油制品、海水淡化及造纸)、汽车、农产食品、医学(义肢、骨科移植及牙科器械与填充物)、运动用品、珠宝及手机等等。
与化合物的反应:◇HF和氟化物氟化氢气体在加热时与钛发生反应生成TiF4,反应式为(1)不含水的氟化氢液体可在钛表面上生成一层致密的四氟化钛膜,可防止HF浸入钛的内部。
氢氟酸是钛的最强熔剂。
即使是浓度为1%的氢氟酸,也能与钛发生激烈反应,见式(2)无水的氟化物及其水溶液在低温下不与钛发生反应,仅在高温下熔融的氟化物与钛发生显著反应。
Ti+4HF=TiF4+2H2(1)2Ti+6HF=2TiF4+3H2(2)◇HCl和氯化物氯化氢气体能腐蚀金属钛,干燥的氯化氢在大于300℃时与钛反应生成TiCl4,见式(3);浓度小于5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生瓜在生成紫色的TiCl3,见式(4);当温度长高时,即使稀盐酸也会腐蚀钛。
各种无水的氯化物,如镁、锰、铁、镍、铜、锌、汞、锡、钙、钠、钡和铵根离子及其水溶液,都不与钛发生反应,钛在这些氯化物中具有很好的稳定性。
Ti+4HCl=TiCl4+2H2 (3)2Ti+6HCl=TiCl3+3H2 (4)◇硫酸和硫化氢钛与小于5%的稀硫酸反应后在钛表面上生成保护性氧化膜,可保护钛不被稀酸继续腐蚀。
但大于5%的硫酸与钛有明显的反应,在常温下,约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。
加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛,见式(5),(6),加热的浓硫酸可被钛还原,生成SO2,见式(7)。
常温下钛与硫化氢反应,在其表面生成一层保护膜,可阻止硫化氢与钛的进一步反应。
但在高温下,硫化氢与钛反应析出氢,见式(8),粉末钛在600℃开始与硫化氢反应生成钛的硫化物,在900℃时反应产物主要为TiS,1200℃时为Ti2S3。
Ti+H2SO4=TiSO4+H2(5)2Ti+3H2SO4=Ti2(SO4)3+H2(6)2Ti+6 H2SO4=Ti2(SO4)3+3SO2+6H2O (7)Ti+H2S=TiS+H2(8)◇硝酸和王水致密的表面光滑的钛对硝酸具有很好的稳定性,这是由于硝酸能快速在钛表面生成一层牢固的氧化膜,但是表面粗糙,特别是海绵钛或粉末钛,可与次、热稀硝酸发生反应,见式(9)、(10),高于70℃的浓硝酸也可与钛发生反应,见式(11);常温下,钛不与王水反应。
温度高时,钛可与王水反应生成TiCl2。
3Ti+4HNO3+4H2O=3H4TiO4+4NO (9)3Ti+4HNO3+H2O=3H2TiO3+4NO (10)Ti+8HNO3=Ti(NO3)4+4NO2+4H2O (11)五、表征对产物进行X分析其衍射图谱,获得该晶体材料的组成及内部原子或分子的相结构、晶格参数、晶体缺陷(位错等)、不同结构相含量,然后对照标准谱图分析晶格参数、晶体缺陷(位错等)以确定所制样品是否为钛。
六、展望1、汽车工业20世纪50年代中期,钛材已经率先应用于汽车工业。
通用公司用涡轮机驱动的试验型车即火鸟2号的外壳全都是采用钛制造的。
从那时起,挤进巨大的汽车工业市场一直是钛工业的长远目标。
随着对汽车节能环保的要求日益提高,汽车需要在减重的同时提高性能。
钛合金具有高的比强度和优异的抗腐蚀性,从而钛材是汽车行业的首选材料。
可是,钛的价格高,这是制约其在汽车工业中广泛应用的一个主要因素。
不过,人们希望能够大规模工业化生产的钛材的价格能下降到航空钛的1/2或1/3,这将为钛的汽车工业的应用提供新的契机。
2、海洋工程舰船及其某些设备部件如船体、热交换器、泵、阀、管线等长期浸泡在海水中,极易受到海水腐蚀。
钛材可以解决由于腐蚀/冲蚀引起的海底管道泄露和海洋生物引起的舰船故障等问题,它不但具有优异的耐海水腐蚀性能,而且可以减轻舰船重量,减少维修费用,延长使用寿命。
在能源紧缺的情况下,从近海到深海,世界许多国家都在开发海洋,利用海洋,而钛材优异的性能可以很好地满足人们在海洋工程方面应用的要求,因而应用领域十分广泛,预计海洋工程用钛有望成为钛材的一个较大的应用市场。
3、医学领域钛材具有高强度、低密度、无毒性以及良好的生物相容性和腐蚀性等特性已被用于医学领域中,成为人工关节、骨创伤、脊柱矫形内固定系统、牙种植体、人工心脏瓣膜、介入性心血管支架、手术器械等医用产品的首先材料。
目前,在世界范围内,每年有超过1000t不同的钛合金被植入人体内。
随着各国经济和医疗事业的发展,人民生活水平的提高,需要进行肢体矫正、整容手术的人越来越多,钛作为已知生物性能最好的金属材料,在医学领域具有广阔的应用前景。
4.计算机钛具有重量轻、无金属过敏性,可循环利用等优良特性,因此,在计算机上的应用日益增多。
钛在计算机上的主要应用为计算机外壳和硬盘盘片,钛比传统的计算机外壳材料金属镁的拉伸强度高出许多,导热率仅为镁的1/10。
用钛作计算机外壳,在保证强度水平的情况下,壁可以较薄,且可以防止硬件热量扩散造成的底面发热。
IBM公司的ThinkpadA系列和T系列的笔记本电脑外壳使用了钛材,不但提高了机壳的强度和抗震性能,而且可使电脑更薄、更轻。
计算机硬盘用钛合金(主要是Ti一3Al一2.5V)比铝合金和玻璃硬盘有更多的优越性,如强度高,可减少盘片厚度,提高存储密度和转速;表面光洁度高,可减少读写磁头与磁盘的距离,提高存储密度;铁盘片还具有损坏容许极限高,表面硬度高等特点。