当前位置:
文档之家› 数值分析李庆扬第五版第六章微分方程数值解法
数值分析李庆扬第五版第六章微分方程数值解法
dy f ( x, y) dx y ( a ) y0 x [a , b ]
只要 f ( x, y) 在a, b R1上连续, 且关于 y 满足 Lipschitz 条件, 即存在与 x, y 无关的常数 L 使
| f ( x, y1 ) f ( x, y2 ) | L | y1 y2 |
§6.2
Euler方法
1、Euler格式
第一步:连续变量离散化
y' f ( x , y ) y ( x 0 ) y0
x x0 , x1 ,, xk , xn ,
p1
第二步:用直线步进
y1 y0 f ( x0 , y0 ) x1 x0
y2 y1 f ( x1 , y1 ) x2 x1
·····
pk
pn pn1
p0
Euler格式
yn1 yn f ( xn , yn ) xn1 xn
yn1 yn hf ( xn , yn )
x0 x1 xk xn xn 1
18世纪最杰出的数学家之一,13岁 时入读巴塞尔大学,15岁大学毕业, 16岁获得硕士学位。 1727年-1741年(20岁-34岁)在彼
的若干方法。
一、初值问题的数值解法
1、常微分方程与解
如果函数 y y( x ) 在区间[a,b]内n阶可导,称方程
F ( x, y, y' , y'' ,, y( n) ) 0
为n阶常微分方程。
满足方程的函数 y y( x ) 称为微分方程的解。 如
y' 2 x
2 y x C , (C为任意常数) 则
5、微分方程的数值解法需要解决的主要问题
(1)如何将微分方程离散化,并建立求其数值解的迭代公式?
(2) 如何估计迭代公式的局部截断误差与整体误差? (3)如何保证迭代公式的稳定性与收敛性?
二、初值问题解的存在唯一性
考虑一阶常微分方程的初值问题 /* Initial-Value Problem */:
yk y( xk ) k 1,2,, n 工程师关注
解的光滑性 yk y( xk ) 解的振动性 * 解的周期性
数学界关注
y y解的稳定性 ( x)
解的混沌性 ……
所谓数值解法:
求函数 y(x) 在一系列节点 a = x0< x1<…< xn= b 处的近似值
yi y( xi ) (i 1, ... , n)
为方程的解, 一般称为方程的通解。 如果
y(0) 1 则有
y x 1
2
为方程满足定解条件的解。
解的图示
y' 2 x y (0) 1
方程的通解 微分关系(方程)
y x2 C 1 C
y x2 1
满足定解条件的解
本教材重点讨论定解问题(初值问题)
对任意定义在 a, b 上的 y1 x , y2 x 都成立,
则上述IVP存在唯一解。
三、初值问题的离散化方法
离散化方法的基本特点是依照某一递推公式, 按节点从左至右的顺序依次求出 y( xi ) 的近似
值 yi (i 1, ... , n) ,取 y0 。
如果计算 yi 1 ,只用到前一步的值 y i ,则称这 类方法为单步方法。 如果计算yi 1 需用到前r步的值yi , yi 1 ,, yi r 1 ,则称这类方法为r步方法。
第6章
§6.1 §6.2
常微分方程数值解法
引 言 欧拉方法
§6.3
龙格—库塔方法
§6.1 引 言
微分方程数值解一般可分为:常微分方程数值解和偏微分 方程数值解。自然界与工程技术中的许多现象,其数学表达式 可归结为常微分方程(组)的定解问题。一些偏微分方程问题 也可以转化为常微分方程问题来(近似)求解。Newton最早采 用数学方法研究二体问题,其中需要求解的运动方程就是常微 分方程。许多著名的数学家,如 Bernoulli(家族),Euler、 Gauss、Lagrange和Laplace等,都遵循历史传统,研究重要 的力学问题的数学模型,在这些问题中,许多是常微分方程的 求解。作为科学史上的一段佳话,海王星的发现就是通过对常 微分方程的近似计算得到的。本章主要介绍常微分方程数值解
L 0
s.t.
f ( x, y1 ) f ( x, y2 ) L y1 y2 , x [a, b], y1 , y2 [ y ( x) , y ( x) ]
4、 迭代格式的构造
(1) 构造思想:将连续的微分方程及初值条件离散为线性方程 组加以求解。由于离散化的出发点不同,产生出各种不同的数 值方法。基本方法有:有限差分法(数值微分)、有限体积法 (数值积分)、有限元法(函数插值)等等。 (2)一般构造方法: 离散点函数值集合 + 线性组合结构 → 近似公式
y' f ( x , y ) y ( x 0 ) y0
定解条件(初始条件)
是否能够找到定解问题的解取决于 f ( x , y )
仅有极少数的方程可以通过“常数变易法”、“可分
离变量法”等特殊方法求得初等函数形式的解sin(xy ),
2
y' 1 x
sin y
,
y' e
x 2 xy
等等
2、数值解的思想
如果找不到解函数
(1)将连续变量 x [a , b] 离散为 数学界还关注:
a x0 x1 xk xn解的存在性 b
y( x ) 在 xk 点的近似值 (2)用代数的方法求出解函数 y 解的唯一性
的方法称为微分方程的数值解法。
y1 ,, yn 称为微分方程的数值解。
称节点间距 hi xi 1 xi (i 0, ... , n 1) 为步长,
通常采用等距节点,即取 hi = h (常数)。
3、相关定义 记 D {( x, y) a x b, y( x) y y( x) } 称 f ( x, y) 在区域D上对 y 满足Lipschitz条件是指: