胶体的应用综述班级:13材料化学1班姓名:金文倩学号:201310230138摘要:胶体与表面化学是研究胶体分散体系物理化学性质及界面现象的科学。
虽然原属物理化学的一个分支,但其与生产和生活实际联系之紧密和应用之广泛是化学学科中任一分支不能比拟的。
关键词:胶体界面化学分散体系应用前言:研究分散体系(除小分子分散体系以外的胶体分散体系和一般粗分散体系)和界面现象的物理化学分支学科。
胶体和表面化学的研究和应用,实际上可追溯到远古时代。
如中国史前时期陶器的制造;4000年以前巴比伦楔形文字碑文中有关油膜(不溶单分子膜)的记载;肥皂以及皂角一类天然表面活性剂(洗涤剂)的应用;毛细现象的研究等等。
但作为一种科学,直到20世纪才得到具有本身特色的迅速发展。
一、胶体1.胶体的由来及其认识的发展胶体一词,来自1861年T.格雷姆研究物质在水中扩散的论文《应用于分析的液体扩散》。
当时发现有些物质(如某些无机盐、糖和甘油等)在水中扩散很快,容易透过一些膜;而另一些物质,如蛋白质、明胶和硅胶类水合氧化物等,则扩散很慢或不扩散。
前者容易形成晶态,称为晶质;后者不易形成晶态,多呈胶态,则称为胶体。
此种分类并未说明胶体的本质,因为胶状的胶体在适当条件下可以形成晶态,而晶质也可以形成胶态。
直到20世纪初超显微镜的发明以及后来电子显微镜的应用,对胶体才逐渐有较清楚的了解。
经典的胶体体系由无数大小在10-7~10-4厘米之间的质点所组成,这种质点远大于一般经典化学所研究的分子,可以是胶状,也可以是晶质。
由这一概念出发,胶体体系的不稳定、不易扩散、渗透压很低等不同于经典分子分散体系的性质,即可得到明确解释。
在胶体体系中,胶体质点成为一个相,周围的介质为另一相。
此种质点分布于介质中的体系称为分散体系:胶体质点分散于介质中的体系即为胶体分散体系;固体质点分散于液体介质中的胶体分散体系称为溶胶,例如,三价铁盐稀溶液水解而得的氢氧化铁溶胶,还有硫化砷溶胶、硫溶胶、金溶胶等等(介质不一定必须是水)。
气体为分散介质的胶体分散体系称为气溶胶,例如烟(固体质点)和雾(液体质点)。
乳状液(液体质点分散在液体介质中)、泡沫(气体分散在液体介质中)、泥浆等也属于分散体系,但质点较大,稳定性差,容易破坏,称为粗分散体系。
从胶体分散体系的热力学特点考虑,溶胶是热力学不稳定的体系,体系中的界面(质点与介质之间的相界面)总是要减少、胶体质点趋向于聚集在一起,有发生聚沉而使分散体系破坏的倾向(粗分散体系更易如此)。
破坏之后,分散体系不能自动形成,故溶胶这种胶体称为不可逆胶体,也叫做疏液胶体,取其质点与分散介质(液体)不亲合(不溶)之意。
2.胶体体系的特点自质点大小这一特点考虑,高分子与胶体质点的大小差不多。
例如,分子量为 36000的胰岛素(球状)直径约4.0纳米;分子量为42000的蛋白朊长椭球长约11纳米,与一般金溶胶和硅溶胶质点大小相近。
有的高分子甚至长达100纳米以上。
因此,与大小有关的性质,如扩散、沉降、渗透压、光散射(见胶体光散射)等性质,二者全都相似。
胶体研究的许多结果可以应用于高分子体系,从而大大推动了高分子的研究,高分子化学的部分领域也就归入胶体化学的范畴。
经典的胶体体系是热力学不稳定体系,是一相(质点)分布在另一相(介质)中的多相分散体系;而高分子质点分散在介质中的这种胶体体系却是热力学稳定的体系,是均相溶液,即高分子溶于溶剂而形成的溶液。
如同小分子的溶液一样,只要溶剂不挥发,高分子溶液就可以永久存在。
高分子溶液的溶剂挥发后,得到高分子化合物;但若把高分子放入溶剂中,则又自动溶解而形成溶液。
于是就把高分子溶液称为可逆胶体,也叫做亲液胶体,以与疏液胶体相对照、相区别。
有古老历史的肥皂和现代的合成表面活性剂,其溶液(一般是水溶液)浓度达到一定程度后,离子(离子型表面活性剂)或分子(非离子型表面活性剂)即缔合成有一定聚集数(表面活性离子数或分子数)的胶团,其大小与经典胶体质点及高分子质点相似。
在20世纪初,J.W.麦克贝恩冲破传统偏见,根据实验事实的分析,首先提出此类物质在溶液中形成胶团的概念,将具有此种性质的肥皂以及离子型表面活性剂一类物质称为胶体电解质。
非离子型表面活性剂在溶液中也能形成胶团,但非胶体电解质,在溶液中不能电离。
此类由离子或分子缔合而成胶团的胶体体系即称为缔合胶体。
与高分子溶液一类亲液胶体相似,缔合胶体是热力学稳定的胶体体系,也是一种可逆胶体──分散介质挥发后剩下的物质,仍可自发地分散于介质中(溶解),在一定浓度的溶液中形成胶团。
但是,在一定浓度以下,表面活性离子或分子未发生缔合,体系中尚无胶团质点,体系中仍为一般的电解质或小分子溶液,不是胶体体系,这是缔合胶体与高分子溶液一类亲液胶体体系的明显不同之处。
胶体质点与经典化学所研究的分子不同的另一特点,是其形状的千差万别,从完全对称的球形和比较对称的椭球形,到极不对称的不规则薄片,以至细长的线条。
这将对体系的性质,特别是流变性质有重大影响。
例如高分子溶液、钻井泥浆、油漆涂料、胶团溶液,以及乳状液、泡沫等的粘度、弹性、塑性及触变性等皆与质点的形状和结构有关(见非牛顿流体)。
研究此种关系的学科即胶体化学中的流变学。
二、胶体与界面化学的概述胶体(英语:Colloid)又称胶状分散体(colloidal dispersion)是一种均匀混合物,在胶体中含有两种不同状态的物质,一种分散,另一种连续。
分散的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1nm—100nm之间的分散系;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的一类分散体系,这是一种高度分散的多相不均匀体系胶粒带有电荷胶粒具有很大的比表面积(比表面积=表面积/颗粒体积),因而有很强的吸附能力,使胶粒表面吸附溶液中的离子。
这样胶粒就带有电荷。
不同的胶粒吸附不同电荷的离子。
一般说,金属氢氧化物、金属氧化物的胶粒吸附阳离子,胶粒带正电,非金属氧化物、金属硫化物的胶粒吸引阴离子,胶粒带负电。
胶粒带有相同的电荷,互相排斥,所以胶粒不容易聚集,这是胶体保持稳定的重要原因。
由于胶粒带有电荷,所以在外加电场的作用下,胶粒就会向某一极(阴极或阳极)作定向移动,这种运动现象叫电泳。
胶体的种类很多,按分散剂状态的不同可分为液溶胶、气溶胶和固溶胶。
如:云、烟为气溶胶,有色玻璃为固溶胶。
中学研究的胶体一般指的是液溶胶。
胶体的性质体现在以下几方面:①有丁达尔效应当一束光通过胶体时,从入射光的垂直方向上可看到有一条光带,这个现象叫丁达尔现象。
利用此性质可鉴别胶体与溶液、浊液。
②有电泳现象由于胶体微粒表面积大,能吸附带电荷的离子,使胶粒带电。
当在电场作用下,胶体微粒可向某一极定向移动。
利用此性质可进行胶体提纯。
胶粒带电情况:金属氢氧化物、金属氧化物和AgI的胶粒一般带正电荷,而金属硫化物和硅酸的胶粒一般带负电荷。
③可发生凝聚加入电解质或加入带相反电荷的溶胶或加热均可使胶体发生凝聚。
加入电解质中和了胶粒所带的电荷,使胶粒形成大颗粒而沉淀。
一般规律是电解质离子电荷数越高,使胶体凝聚的能力越强。
用胶体凝聚的性质可制生活必需品。
如用豆浆制豆腐,从脂肪水解的产物中得到肥皂等。
④发生布朗运动含义:无规则运动(离子或分子无规则运动的外在体现)产生原因:布朗运动是分子无规则运动的结果布朗运动是胶体稳定的一个原因胶体的知识与人类生活有着极其密切的联系。
除以上例子外还如:①土壤里发生的化学过程。
因土壤里许多物质如粘土、腐殖质等常以胶体形式存在。
②国防工业的火药、炸药常制成胶体。
③石油原油的脱水、工业废水的净化、建筑材料中的水泥的硬化,都用到胶体的知识。
④食品工业中牛奶、豆浆、粥都与胶体有关。
总之,人类不可缺少的衣食住行无一不与胶体有关,胶体化学已成为一门独立的学科。
表面化学凡是在相界面上所发生的一切物理化学现象统称为界面现象(interfase phenomena)或表面现象(surfase phenomena)。
研究各种表面现象实质的科学称为表面化学。
表面化学在20世纪40年代前,得到了迅猛发展,大量的研究成果被广泛应用于各生产部门,如涂料、建材、冶金、能源等行业;但就学科来说它只是作为物理化学的一个分支—胶体化学。
到了60年代末70年代初,人们从微观水平上对表面现象进行研究,使得表面化学得到飞速发展,表面化学作为一门基础学科的地位被真正确立。
三、胶体的应用胶体在自然界尤其是生物界普遍存在,它与人类的生活及环境有着密切的联系;胶体的应用很广,且随着技术的进步,其应用领域还在不断扩大。
工农业生产和日常生活中的许多重要材料和现象,都在某种程度上与胶体有关。
例如,在金属、陶瓷、聚合物等材料中加入固态胶体粒子,不仅可以改进材料的耐冲击强度、耐断裂强度、抗拉强度等机械性能,也可以改进材料的光学性质,有色玻璃就是由某些胶态金属氧化物分散于玻璃中制成的。
在医学上,越来越多地利用高度分散的胶体来检验或治疗疾病,如胶态磁流体治癌术是将磁性物质制成胶体粒子,作为药物的载体,在磁场作用下将药物送到病灶,从而提高疗效。
另外,血液本身就是由血球在血浆中形成的胶体分散系,与血液有关的疾病的一些治疗、诊断方法就利用了胶体的性质,如血液透析、血清纸上电泳等。
土壤里许多物质如粘土、腐殖质等常以胶体形式存在,所以土壤里发生的一些化学过程也与胶体有关。
国防工业上有些火药、炸药必须制成胶体,冶金工业上的选矿,石油原油的脱水,塑料橡胶及合成纤维等的制造过程都会用到胶体知识。
胶体的聚沉许多胶体粒子带电荷,由于同种胶体粒子带同种电荷,在一般情况下,它们之间的相互排斥使它们不易聚集,并可以保存较长的时间。
但是,如往某些胶体里加入少量电解质,由于电解质电离生成的阳离子或阴离子中和了胶体粒子所带的电荷,使胶体粒子聚集长大,形成了颗粒较大的沉淀从分散剂里析出,这个过程叫做聚沉。
除了加入电解质可使某些胶体聚沉外,将两种带相反电荷的胶体混合,也能发生聚沉。
通常使用的无机聚沉剂大多为铝盐或铁盐,它们猜你喜欢胶体金制备快速生物阅读器390国家及发表医学论文生物反馈治疗多少钱mg手机版下载女生怎么去脸上痘痘租手机一天多少钱精锐1对1生物cik生物细胞疗法生物疗法的原理的水解产物是带正电荷的胶体粒子,对很多固体表面有强烈的吸附作用,由于水中悬浮物表面大多带有负电,这种吸附有效地减小了粒子表面的电荷,并造成聚沉。
例如,明矾净水就是利用明矾水解后产生的带正电的Al(OH)3胶体与带负电的水中悬浮物、泥沙等聚沉,达到净水的目的。
胶体发生聚沉作用一般情况下都生成沉淀,但有些胶体聚沉后,胶体粒子和分散剂凝聚在一起,成为不流动的冻状物,这类物质叫凝胶。
例如,日常食用的豆腐就是以盐卤(主要成分是MgCl2²6H2O)或石膏(CaSO4²2H2O)为聚沉剂,使豆浆里的蛋白质和水等物质一起聚沉而制成的一种凝胶。