当前位置:文档之家› 数字钟时钟电路图

数字钟时钟电路图

这几种触发器都有集成电路产品。其中应用最广泛的当数JK触发器和D触发器。不过,深刻理解RS触发器对全面掌握触发器的工作方式或动作特点是至关重要的。事实上,JK触发器和D触发器是RS触发器的改进型,其中JK触发器保留了两个数据输入端,而D触发器只保留了一个数据输入端。D触发器有边沿D触发器和高电平D触发器。74LS74为一个电平D触发器。
图9
表1 BCD码十进制计数时序表2二—五混合进制计数时序
CK
0
0
0
0
0
1
0
0
0
1
2
0
0
1
0
3
0
0
1
1
4
0
1
0
0
5
0
1
0
1
6
0
1
1
0
7
0
1
1
1
8
1
0
0
0
9
1
0
0
1
CK
0
0
0
0
0
1
0
0
0
1
2
0
0
1
0
3
0
0
1
1
4
0
1
0
0
5
1
0
0
0
6
1
0
0
1
7
1
0
1
0
8
1
0
1
1
9
1
1
0
0
②异步计数器74LS92
所谓异步计数器是指计数器内各触发器的时钟信号不是来自于同一外接输入时钟信号,因而触发器不是同时翻转。这种计数器的计数速度慢。一异步计数器74LS92是二—六—十二进制计数器,即CKA和 组成二进制计数器,CKB和 在74LS92中为六进制计数器。当CKB和 相连,时钟脉冲从CKA输入,74LS92构成十六进制计数器。74LS92的管脚图如图10。
CK
Q10
Q03 Q02 Q01 Q00
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
8
9
10
11
12
13
0
0
0
1
1
1
0
1 0 0 0
1 0 0 1
1 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0
3.2单元电路的设计
数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。
在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。
3.2.1主体电路部分
主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。下面将对各部分电路进行设计。
1.设计目的
设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分。其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。扩展功能部分则具有:定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。分则由扩展
下面将分别介绍60进制计数器和“12翻1”小时计数器。
(一)60进制计数器
电路如图8所示
图8
电路中,74LS92作为十位计数器,在电路中采用六进制计数;74LS90作为个位计数器在电路中采用十进制计数。当74LS90的14脚接振荡电路的输出脉冲1Hz时74LS90开始工作,它计时到10时向十位计数器74LS92进位。下面对电路中所用的主要元件及功能介绍。
②计数器74LS191
74LS191的管脚图如图13
图13
3.2.1.3校时电路
(一)电路如图14所示
图14
(二)电路的工作原理
校时电路的作用是:当数字钟接通电源或者出现误差时,校正时间。校时是数字钟应具有的基本功能。一般电子表都具有时、分、秒等校时功能。为了使电路简单,在此设计中只进行分和小时的校时。校时有“快校时”和“慢校时”两种,“快校时”是通过开关控制,使计数器对1Hz校时脉冲计数。“慢校时”是用手动产生单脉冲作校时脉冲。图中S1校分用的控制开关,S2(总图)为校时用的控制开关,它们的控制功能如表4所示,校时脉冲采用分频器输出的1Hz脉冲,当S1或S2分别为“0”时可以进行“快校时”。如果校时脉冲由单次脉冲产生器提供,则可以进行“慢校时”。表4校时开关的功能
输入输出
输入输入输出
清零
图4图5
图6
输入
输出
CK
CR
EN
上升沿
L
H
加计数
L
L
上升沿
加计数
下降沿
L
X
保持
X
L
上升沿
上升沿
L
L
H
L
下降沿
X
L
X
全为L
上表:CD4518的功能表
振荡器和分频器两部分构成振荡电路,它的电路图如图7所示。
根据图7可知电路的工作原理是:石英晶体振荡器提供的频率为1MHz,CD4518组成十分频电路。并且一个CD4518可以组成两个十分频电路即:CD4518的引脚2与引脚6组成一个十分频电路而引脚10与引脚14组成另一个十分频电路。晶振的输出接入第一块CD4518的输入引脚2,经过一次十分频,频率变为100KHz。输出引脚6接入同一块CD4518的引脚10经第二次分频,频率变为10KHz。输出引脚接人第二块CD4518的输入引脚2再经一次分频,频率变为1KHz。这样经过六次分频最后可以得到1Hz的频率。
0 0 0 1
(二)电路的工作原理
由表可知:个位计数器由4位二进制同步可逆计数器74LS191构成,十位计数器由双D触发器74LS74构成,将它们组成“12翻1”小时计数器。
由表可知:计数器的状态要发生两次跳跃:一是:计数器计到9,即个位计数器的状态为 =1001后,在下一计数脉冲的作用下计数器进入暂态1010,利用暂态的两个1即 使个位异步置0,同时向十位计数器进位使 =1;二是计数到12后,在第13个计数脉冲作用下个位计数器的状态应为 =0001,十位计数器的 =0。第二次跳跃的十位清“0”和个位置“1”的输出端 、 、 来产生。对电路中所用的主要元件及功能介绍。
S1
S2
功能
1
1
ห้องสมุดไป่ตู้计数
1
0
校分
0
0
校时
表4
(三)对电路中所用的主要元件及功能介绍
在此电路中,用到的元器件有两块四2输入与非门74LS00、一块六反相器74 LS04、两个电容、两个电阻以及两个开关。
(1)四-2输入与非门74LS00
集成逻辑门是数字电路中应用十分广泛最基本的一种器件,为了合理的使用和充分利用其性能,必须对它的主要参数和逻辑功能进行测试。74LS00与非门的主要参数为:
主体电路扩展电路
图1
由图1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。
振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1”的规律计数。计数器的输出经译码器送显示器。计时出现误差时电路进行校时、校分、校秒。扩展电路必须在主体电路正常运行的情况下才能进行扩展功能。
弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。
如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电效应,是一个压电器件。当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。石英晶体的固有频率十分稳定。另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄。将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。在设计中所用的振荡器的电路图如图3所示。该电路能产生1MHz的方波脉冲振荡信号。
图3
(2)分频器
分频器的作用是将由石英晶体产生的高频信号分频成基时钟脉冲信号和扩展部分所需的频率。在此电路中,分频器的功能主要有两个:一是产生标准脉冲信号;二是功能扩展电路所需的信号,如仿电台用的1KHz的高频信号和500Hz的低频信号等.在此电路中作为分频器的元件是:CD4518。
CD4518可以组成二分频电路和十分频电路。用CD4518组成二分频的电路如图4;用CD4518组成十分频的电路如图5;在本次设计中所用的分频器的电路图如图6。电路经过十分频后将晶振来的1MHz的振荡脉冲变为1Hz的脉冲信号,该信号作为计数器的计数脉冲使用。
相关主题