当前位置:文档之家› 某输气管道工艺设计

某输气管道工艺设计

重庆科技学院《管道输送工艺》课程设计报告学院:石油与天然气工程学院专业班级:学生姓名:学号:设计地点(单位)重庆科技学院设计题目: 某输气管道工艺设计完成日期:年 1 月 3 日指导教师评语:___________________________________________________________________________ ___________________________________________________________________________ ______________成绩(五级记分制):指导教师(签字):目录1 设计总论 (1)1.1 设计依据及原则 (1)1.1.1 设计依据 (1)1.1.2 设计原则 (1)1.2 总体技术水平 (1)2 设计参数 (2)3 工艺计算 (3)3.1 管道规格 (3)3.1.1天然气相对分子质量 (3)3.1.2 天然气密度及相对密度 (3)3.1.3 天然气运动粘度 (3)3.1.4任务输量 (3)3.1.5 管道内径的计算 (4)3.1.6壁厚计算 (4)3.2 末段长度和管径确定 (6)3.2.1假设末段长度 (6)3.2.2参量的计算 (6)3.2.3 计算管道末段储气量 (7)4 输气管道沿线布站相关工艺计算 (9)4.1压缩机相关概况 (9)4.2压缩机站数、布站位置的计算公式依据 (9)4.3压缩机站数、布站位置的计算 (10)4.4压缩比 计算 (11)4.4压缩机的选择 (12)5 布置压气站 (13)5.1确定平均站间距 (13)5.2确定压气站数 (13)6 设计结果 (14)参考文献 (15)重庆科技学院课程设计设计总论1 设计总论1.1 设计依据及原则本设计主要根据设计任务书,查询相关的国家标准和规范,以布置合理的长距离输气干线。

1.1.1 设计依据(1)国家的相关标准、行业的相关标准、规范;(2)相似管道的设计经验(3)设计任务书1.1.2 设计原则(1)严格执行现行国家、行业的有关标准、规范。

(2)采用先进、实用、可靠的新工艺、新技术、新设备、新材料,建立新的管理体制,保证工程项目的高水平、高效益,确保管道安全可靠,长期平稳运行。

(3)节约用地,不占或少占良田,合理布站,站线结合。

站场的布置要与油区内各区块发展紧密结合。

(4)在保证管线通信可靠的基础上,进一步优化通信网络结构,降低工程投资。

提高自控水平,实现主要安全性保护设施远程操作。

(5)以经济效益为中心,充分合理利用资金,减少风险投资,力争节约基建投资,提高经济效益。

1.2 总体技术水平(1)采用高压长距离全密闭输送工艺;(2)输气管线采用先进的 SCADA 系统,使各站场主生产系统达到有人监护、 1 自动控制的管理水平。

既保证了正常工况时管道的平稳、高效运行,也保证了管道在异常工况时的超前保护,使故障损失降低到最小。

(3)采用电路传输容量大的光纤通信。

给全线实现 SCADA 数据传输带来可靠的传输通道,给以后实现视频传输、工业控制及多功能信息处理提供了可能。

(4)在线路截断阀室设置电动紧急切断球阀,在 SCADA 中心控制室根据检漏分析的结果,确定管道泄漏位置,并可及时关闭相应泄漏段的电动紧急切断球阀。

(5)站场配套自成系统。

(6)采用固化时间短、防腐性能优异的环氧粉末作为管道外防腐层。

重庆科技学院课程设计设计参数2 设计参数(1)所输天然气的组分见下表表2.1(2)天然气的温度为42℃,管道长度为1675km,任务输量(起点流量)为:18.9亿方/年,气源起点压力为:6MPa。

(3)压气站最大工作压力为 5.5MPa,进站压力为 5.2MPa,各站自用气系数为0.5%,末端最低压力1.25MPa。

(4)入站口到压缩机入口压损为0.11MPa,压缩机出口到压缩站压损0.2MPa。

3 工艺计算3.1 管道规格3.1.1天然气相对分子质量有气体的相对分子质量公式:M=∑ii M y (3.1)M=16×97.31%+30×1.69%+44×0.77%+58×0.05%+58×0.02+28×0.00%+72×0.01%+72×0.01%+86×0.05%+34×0.05%+44×0.03%+28×0.00%+4×0.00%+1×1.01%+40×0.00%=16.5553.1.2 天然气密度及相对密度由公式的:==055.24天天M ρ16.555/24.055=0.6883m kg (3.2)相对密度 aρρ=∆=0.688/1.206=0.57 3.1.3 天然气运动粘度(1)由各组分粘度计算天然气粘度i y μμ=(3.3)按公式带入数据得动力粘度: μ=9.54 (2)计算天然气运动粘度μνρ= (3.4) s mm 274.1657.054.9==ν 3.1.4任务输量任务年输量为18.9亿方/年。

s m h m d m a m Q 333638602158331018.5109.18==⨯=⨯=3.1.5 管道内径的计算根据公式: 0.2070.0330.390.20710011.4v d q P ρν-=∆ (3.5) 式中 ρ—为天然气标准密度,3m kg ;ν—为天然气运动粘度,s mm 2; v q —为天然气在该管段内的流量,s m 3: 100P∆—管道在100米的压力降,当P >3.5MPa ,100P ∆取45KPa ,当1.45.3≤<P MPa ,100P ∆取35KPa ()3。

所以,从起点到进气点的管道管径:==207.0-38.0033.0207.0145*60*54.9*74.16*4.11D 546mm3.1.6壁厚计算输气管线的管径确定后,要根据其输送压力、管线材质等来设计壁厚。

油田油气集输和外输油、气管线可按下式计算:FD P S B H σδδ2)2(+=(3.6)式中 H P ——管线设计的工作压力,Mpa ;H D ——管线管径,H D =B D +δ2,B D 为管道内径0d ,mm ; s σ——刚性屈服极限,Mpa(查表3.1) F —— 设计系数(查表3.2)表3.1刚性屈服极限根据设计要求,选用APIS-SL X70 s σ=482;因为是输气管线F=0.6 。

分别带入管径,求得:F D P H H σδ2=FD P S B H σδ2)2(+==6.04822)2546(61⨯⨯+⨯δ=5.87mm 1H D =1B D +21δ=546+5.87⨯2 =557.74mm 根据国标无缝钢管规格表选管径规格:表3.3国标无缝钢管规格表3.2 末段长度和管径确定当设计一条新的干线输气管道时,工艺计算应该从末段开始,先确定末段的长度和管径,然后再进行其他各中间管段的计算。

输气管道末段的计算与其他各段的区别是:应该考虑末段既能输气,又能储气的特点,也就是说,在末段的计算中除了要考虑与整条输气管道一致的输气能力,还必须考虑储气能力,最理想的是使末段能代替为消除昼夜用气不均衡所需的全部容积的储气罐。

计算输气管道末段长度和直径时,应考虑以下三个条件:(1)当用气处于低峰时(夜间),输气管道末段应能积存全部多余的气体,如条件不允许,可考虑部分满足;当用气处于高峰时(白天),应能放出全部积存的气体。

(2)输气管道末段的起点压力,即最后一个压缩机站的出口压力不应高于压缩机站最大工作压力,并且应在钢管强度的允许范围之内。

(3)末段的终点压力不应低于城市配气管网的最小允许压力。

3.2.1假设末段长度LZ=16KM,内径d=580mm根据有关资料查的经验值,末段储气能力为输气量的25%-30%,已知末段储气能力为V=75万m3/d通过假设数据求出末段输气管道的储气能力Vs ,当Vs 接近要求的末段储气能力的时候,假设成立。

若不符合要求则重新假设。

3.2.2参量的计算1.天然气压缩因子的计算有很多方法这里选择比较精确的一个压缩因子公式: 15.110*p 113.0100100)(+=Z (3.7)其中 p 为管道设计压力,6MPa 。

带入数据 求得Z=0.89 2.水力摩阻系数的计算:前苏联天然气研究所近期公式 2.0e 2067.0)(D=λ 其中 D 取管道末段管径580mm ,e 取0.03带入公式得λ=0.0107 3.参数C :52DC TZ C ∆=λ (3.8)其中C 0=0.03848 带入数据的C=175933.2.3 计算管道末段储气量储气开始时,终点的最低压力P2min 应不低于配气站要求的最低压力,故P2min 为1.3Mpa ,计算末段起点最低压力P1min 。

22min 2min 1Q Cl P P z +=(3.9)其中P2min=1.3MPa ,C=17593,LZ=16km , Q=61018.5⨯m3/d 带入公式得P1min=1.64MPa储气结束时,起点最高压力应不超过最后一个压气站或管路的强度,故max 1P 为已知,则:max 2P =22max 1Q Cl P z -其中max 1P=5MPa ,带入公式得P2max=4.9MPa 储气开始时的平均压力:)(32min 2min 12min2min 1min P P P P P pj ++= (3.10) 带入以上数据的minpj P = 1.48MPa储气结束是的平均压力:)(32max 2max 12max 2max 1max P P P P P pj ++= 带入上述数据得maxpj P =4.95MPa 。

根据输气管道末段储气开始和结束时的平均压力minpj P 和maxpj P 可求得末段输气管的储气能力为:z pj pj S l TZT P P P D V 0min max 24-=π (3.11)式中 0P ---工程标准状况下的压力,0P =101325Pa0T ---工程标准状况下的温度,0T =293K 带入相关数据得S V 78.62万m3/d 。

通过假设的管道长度和管径计算出的储气量接近要求的储气量,所以假设成立。

所以,末段长度为16km ,管道规格为580*12.4 输气管道沿线布站相关工艺计算4.1压缩机相关概况沿线有气体分出或引入的干线输气管的特点是管路中的流量逐段变化:在分气的情况下,流量逐段减小;在进气的情况下,流量逐段增大。

如果计算段起点流量保持不变,在相同管径、压力等条件下,有分气点时,计算段的长度必定大于无分气点的输气管计算段的长度,而且分气量越大(或分气点越多),计算段越长;在进气点时,计算段的长度必定小于无分气点的输气管计算段的长度,而且进气量越大(或进气点越多),计算段越短;在既有分气点又有进气点的情况下,计算段的长度取决于分气和进气的共同影响,分气的影响使管段变长,进气的影响使管段变短,因此,如分气的影响超过进气的影响,则计算段变长,反之,则计算段变短。

相关主题