当前位置:文档之家› 水吸收氨气填料塔设计样本

水吸收氨气填料塔设计样本

.东南大学成贤学院课程设计报告题目填料吸收塔的设计课程名称化工原理课程设计专业制药工程班级学生姓名学号设计地点东南大学成贤学院指导教师设计起止时间:2012 年8月28日至2012 年9 月14 日目录课程任务设计书 (3)第一节吸收塔简介 (4)1.1 吸收技术概况 (4)1.2 吸收设备--填料塔概况 (4)1.3 典型的吸收过程 (5)第二节填料塔主体设计方案的确定 (6)2.1 装置流程的确定 (6)2.2 吸收剂的选择 (6)2.3 填料的类型与选择 (7)2.3.1填料种类的选择 (7)2.3.2 填料规格的选择 (8)2.3.3 填料材质的选择 (8)第三节填料塔工艺尺寸的计算 (10)3.1 基础物性数据 (10)3.1.1 液相物性数据 (10)3.1.2 气相物性数据 (10)3.1.3 气液相平衡数据 (10)3.2 物料衡算及校核 (11)3.2.1水吸收氨气平衡关系 (11)3.2.2绘制X-Y图 (11)3.2.3物料衡算 (16)3.3 塔径的计算及校核 (18)3.3.1塔径的计算 (18)3.3.2塔径的校核 (20)3.4 填料层高度的计算及分段 (20)3.4.1填料层高度的计算 (20)3.4.2 填料层的分段 (23)3.5 填料层压降的计算 (23)第四节其他辅助设备的计算与选择 (24)4.1 吸收塔的主要接管尺寸计算 (24)4.2 气体进出口的压降计算 (24)4.3 离心泵的选择与计算 (24)附件一:1.计算结果汇总 (26)2.主要符号及说明 (27)3.参考文献 (28)4. 个人小结 (28)附件二:1.填料塔设备图 (30)2.塔设备流程图 (31)3.埃克特通用压降关联图 (32)4.X-Y关系图(见计算过程)化工原理课程设计任务书一、设计项目水吸收氨气的填料吸收塔二、设计条件1、混合气体流量2400 m3 (标)/h.2、混合气体组分含氨15 %,空气85 %(体积比)3、混合气体温度40 ℃4、吸收率94 %5、吸收剂温度20 ℃6、操作压强 1 atm三、设计容1、确定操作流程,绘制流程图2、选择吸收剂、填料3、确定吸收平衡关系,绘制X-Y图、进行物料衡算4、计算塔径、填料层高度5、填料层压降核算、喷淋密度计算6、附属设备选型和计算7、绘制设备图第一节吸收技术简介1.1 吸收技术概况在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

吸收操作广泛地用于气体混合物的分离,其在工业上的具体应用大致有以下几种:(1)原料气的净化。

为出去原料气中所含的杂质,吸收可说是最常见的方法。

就杂质的浓度来说,多数很底,但因为危害大而仍要求高的净化率。

例如用水或碱液脱除合成氨原料气中的二氧化碳,用丙酮脱除裂解气中的乙炔等。

(2)有用组分的回收。

如从合成氨厂的放空气中用水回收氨;从焦炉煤气中以洗油回收粗苯(包括苯、甲苯、二甲苯等)蒸气和从某写干燥废气中回收有机溶剂蒸气等。

(3)某些产品的制取。

将气体中需用的成分以指定的溶剂吸收出来,成为溶液态的产或半成品。

如制酸工业中从含盐酸、氮氧化物、三氧化硫的气体制取盐酸、硝酸、硫酸;在甲醇|(乙醇)蒸气经氧化后,用水吸收以制成甲醛(乙醛)半成品等。

(4)废气的治理。

很多工业废气中含有二氧化硫、氮氧化物(主要是一氧化氮及二氧化氮)、汞蒸气等有害成分虽然浓度一般很底,但对人体和环境的危害甚大而必须进行治理。

这类环境保护问题在我国已愈来愈受重视。

选择适当的工艺和溶剂进行吸收,是废气治理中应用教广的方法。

当然,以上目的有时也难于截然分开,如干燥废气中的有机溶剂,能回收下来就很有价值,任其排放则会然大气。

1.2 吸收设备--填料塔概况填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

填料的上方安装填料压板,以防被上升气流吹动。

液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。

填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。

当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。

壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。

因此,当填料层较高时,需要进行分段,中间设置再分布装置。

液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。

该设计填料塔中,氨气和空气混合气体,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的水逆流接触,在填料的作用下进行吸收。

经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出。

填料塔的设备图见附录二1.3 典型的吸收过程一个完整的吸收分离过程,包括吸收和解吸两个部分。

典型过程有单塔和多塔、逆流和并流、加压和减压等。

以煤气脱苯为例:在炼焦及制取城市煤气的生产过程中,焦炉煤气含有少量的苯、甲苯类低碳氢化合物的蒸汽(约353/m g )应予以分离回收,所用的吸收溶剂为该工业生产过程中的副产物,即焦煤油的精制品称为洗油。

回收苯系物质的流程包括吸收和解吸两个大部分。

含苯煤气在常温下由底部进入吸收塔,洗油从塔顶淋入,塔装有木栅等填充物。

在煤气与洗油接触过程中,煤气中的苯蒸汽溶解于洗油,使塔顶离去的煤气苯含量降至某允许值(<3/2m g ),而溶有较多苯系物质的洗油(称富油)由吸收塔底排出。

为取出富油中的苯并使洗油能够再次使用(称溶剂的再生),在另一个称为解吸塔的设备中进行与吸收相反的操作----解吸。

为此,可先将富油预热到170C 左右由解吸塔顶淋下,塔底通入过热水蒸气。

洗油中的苯在高温下逸出而被水蒸气带走,经冷凝分层将水除去,最终可得苯类液体(粗苯),而脱除溶质的洗油(称贫油)经冷却后可作为吸收溶剂再次送入吸收塔循环使用.第二节填料塔的主体设计方案的确定2.1流程说明本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。

逆流操作的特点是:传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。

工业生产中多采用逆流操作。

填料塔的工艺流程图见附录二2.2 吸收剂的选择吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面:(1)溶解度吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的用量。

(2)选择性吸收剂对溶质组分要有良好的吸收能力,而对混合气体中其他组分不吸收或吸收甚微,否则不能直接实现有效分离。

(3)挥发度要低操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸收剂的挥发损失。

(4)黏度吸收剂在操作温度下的黏度越低,其在塔的流动性越好,有助于传质速率和传热速率的提高。

(5)其他所选用的吸收剂应尽可能满足无毒性、无腐蚀性,不易燃易爆、不发泡、冰点低、价廉易得以及化学性质稳定等要求。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此吸收空气中的氨,防止氨超标具有重要意义。

为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

设计采填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。

所以本课程设计选择用清水作吸收剂,氨气为吸收质。

水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。

且氨气不作为产品,故采用纯溶剂。

2.3 填料的类型与选择塔填料(简称为填料)是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,其性能优劣是决定填料塔操作性能的主要因素。

填料的比表面积越大,气液分布也就越均匀,传质效率也越高,它与塔件一起决定了填料塔的性质。

因此,填料的选择是填料塔设计的重要环节。

2.3.1 填料种类的选择填料的种类很多根据装填方式的不同,可分为散装填料和规整填料两大类。

本次采用散装填料。

散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

拉西环鲍尔环阶梯环弧鞍形填料矩鞍形填料填料的阶梯环结构与鲍尔环填料相似,环壁上开有长方形小孔,环有两层交错45°的十字形叶片,环的高度为直径的一半,环的一端成喇叭口形状的翻边。

这样的结构使得阶梯环填料的性能在鲍尔环的基础上又有提高,其生产能力可提高约10%,压降则可降低25%,且由于填料间呈多点接触,床层均匀,较好地避免了沟流现象。

阶梯环一般由塑料和金属制成,由于其性能优于其它侧壁上开孔的填料,因此获得广泛的应用。

因此本次设计选用阶梯环。

2.3.2 填料规格的选择工业塔常用的散装填料主要有Dn16\Dn25\Dn38\ Dn76等几种规格。

同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多。

而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。

因此,对塔径与填料尺寸的比值要有一规定。

常用填料的塔径与填料公称直径比值D/d的推荐值。

填料种类D/d的推荐值拉西环D/d≥20~30鞍环D/d≥15鲍尔环D/d≥10~15阶梯环D/d>8环矩鞍D/d>82.3.3 填料材质的选择工业上,填料的材质分为瓷、金属和塑料三大类。

塑料填料的材质主要包括聚丙烯、聚乙烯及聚氯乙烯等,国一般多采用聚丙烯材质。

塑料填料的耐腐蚀性能较好,可耐一般的无机酸、碱和有机溶剂的腐蚀。

其耐温性良好,可长期在100℃以下使用。

综合以上:选用50mm 聚丙烯阶梯环塔填料。

其主要性能参数查表得: 比表面积a :114.232/m m 空隙率ε:0.927 填料因子Φ:189m - 国阶梯环特性数据见表2.1。

相关主题