电炉炉温控制系统设计开题报告一、课题的开发背景与需求分析随着现代科学技术的迅猛发展,各个领域对温度控制系统的精度、稳定性等的要求越来越高,控制系统也千变万化。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制等等。
随着电炉广泛应用于各行各业,其温度控制通常采用模拟或数字调节仪表进行调节,但存在着某些固有的缺点。
而采用单片机进行炉温控制,不仅可以大大地提高控制质量和自动化水平,而且具有良好的经济效益和推广价值。
本设计以AT89C51单片机为核心控制器件,以MAX6675作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电炉微型计算机温度控制系统。
二、调研分析经过开题期间的文献查阅和实际情况调研,了解到在电炉炉温控制过程中主要应用AT89C51、MAX6675、LED显示器、LM324比较器等等,而主要是通过K型(镍铬-镍硅)热电偶温度传感器采集环境温度,以单片机为核心控制部件,并通过四位数码管显示实时温度的一种数字温度计。
软件方面采用汇编语言来进行程序设计,使指令的执行速度快,节省存储空间。
为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了,使硬件在软件的控制下协调运作。
而系统的过程则是:首先,通过设置按键,设定恒温运行时的温度值,并且用数码管显示这个温度值.然后,在运行过程中将采样的温度模拟量送入A/D转换器中进行模拟-数字转换,再将转换后的数字量用数码管进行显示,最后用单片机来控制加热器,进行加热或停止加热,直到能在规定的温度下恒温加热。
三、关键技术与解决方案1、温度传感器的选取目前市场上温度传感器较多,主要有以下几种方案:方案一:选用铂电阻温度传感器。
此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。
方案二:采用热敏电阻。
选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。
方案三:采用K型(镍铬-镍硅)热电偶。
其可测量1312℃以内的温度,其线性度较好,而且价格便宜。
K型热电偶的输出是毫伏级电压信号,最终要将其转换成数字信号与CPU通信。
传统的温度检测电路采用“传感器-滤波器-放大器-冷端补偿-线性化处理-A/D转换”模式,转换环节多、电路复杂、精度低。
在本系统中,采用的是高精度的集成芯片MAX6675来完成“热电偶电势-温度”的转换,不需外围电路、I/O接线简单、精度高、成本低。
MAX6675是MAXIM公司开发的K型热电偶转换器,集成了滤波器、放大器等,并带有热电偶断线检测电路,自带冷端补偿,能将K型热电偶输出的电势直接转换成12位数字量,分辨率0.25℃,工作电压为3.0~5.5V。
温度数据通过SPI端口输出给单片机,其冷端补偿的范围是-20~80℃,测量范围是0~1023.75℃。
表1 MAX6675的引脚功能图当MAX6675的CS引脚从高电平变为低电平时, MAX6675 将停止任何信号的转换并在时钟SCK的作用下向外输出已转化的数据。
相反,当CS从低电平变回高电平时, MAX6675将进行新的转换。
在CS 引脚从高电平变为低电平时, 第一个字节D15 将出现在引脚SO。
一个完整的数据读过程需要16个时钟周期,数据的读取通常在SCK 的下降沿进行。
MAX6675的输出数据为16位,其中D15 始终无用, D14~D3对应于热电偶模拟输入电压的数字转换量, D2用于检测热电偶是否断线(D2为1表明热电偶断开) , D1 为MAX6675 的标识符, D0 为三态。
需要指出的是:在以往的热电偶电路设计中,往往需要专门的断线检测电路, 而MAX6675 已将断线检测电路集成于片内,从而简化了电路设计。
D14~D3 为12 位数据,其最小值为0 ,对应的温度值为0 ℃; 最大值为4095 , 对应的温度值为1023.75 ℃; 由于MAX6675 内部经过了激光修正, 因此, 其转换结果与对应温度值具有较好的线性关系。
温度值与数字量的对应关系为: 温度值= 1023.75 ×转换后的数字量/ 4095。
由于MAX6675 的数据输出为3 位串行接口, 因此只需占用微处理器的3 个I/ O 口。
图2 是以89C51系列单片机为例给出的系统连接图。
使用时, 可用软件模拟同步串行读取过程。
图中串行外界时钟由微处理器的P1.3 提供,片选信号由P1.2 提供,转换数据由P1. 1 读取。
热电偶的模拟信号由T+ 和T-端输入,其中T- 需接地。
MAX6675 的转换结果将在SCK的控制下连续输出,如图1所示。
图1 温度检测电路比较以上三种方案,方案三具有明显的优点,因此选用方案三。
2、键盘显示部分控制与显示电路是反映电路性能、外观的最直观部分,所以此部分电路设计的好坏直接影响到电路的好坏。
方案一:采用可编程控制器8279与数码管及地址译码器74LS138组成,可编程/显示器件8279实现对按键的扫描、消除抖动、提供LED的显示信号,并对LED显示控制。
用8279和键盘组成的人机控制平台,能够方便的进行控制单片机的输出。
方案二:采用单片机AT89C52与4X4矩阵组成控制和扫描系统,并用89C52的P1口对键盘进行扫描,并用总线的方式在P0口接1602液晶来显示炉温和设定值,这种方案既能很好的控制键盘及显示,又为主单片机大大的减少了程序的复杂性,而且具有体积小,价格便宜的特点。
对比两种方案可知,方案一虽然也能很好的实现电路的要求,但考虑到电路设计的成本和电路整体的性能,我们采用方案二。
3、控制电路部分方案一:采用8031芯片,其内部没有程序存储器,需要进行外部扩展,这给电路增加了复杂度。
方案二:采用2051芯片,其内部有2KB单元的程序存储器,不需外部扩展程序存储器。
但由于系统用到较多的I/O口,因此此芯片资源不够用。
方案三:采用AT89C52单片机,其内部有4KB单元的程序存储器,不需外部扩展程序存储器,而且它的I/O口也足够本次设计的要求。
比较这三种方案,综合考虑单片机的各部分资源,因此此次设计选用方案三。
4、报警部分当电炉温度高于上限温度时,报警系统报警。
显示部分可实时显示电炉的炉温值。
多功能控制按键,通过软件控制实现按键的多功能操作,可以完成设定温度基准值和报警取消等功能。
5、PID过程控制部分(1)过程控制的基本概念过程控制――对生产过程的某一或某些物理参数进行的自动控制。
1)模拟控制系统模拟调节器图2 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。
控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
2)、微机过程控制系统图3 微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
3)数字控制系统DDC图4 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。
微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。
由于计算机的决策直接作用于过程,故称为直接数字控制。
DDC系统也是计算机在工业应用中最普遍的一种形式。
4)模拟PID控制系统组成图5 模拟PID 控制系统原理框图PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。
A 、PID 调节器的微分方程⎥⎦⎤⎢⎣⎡++=⎰tDI P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -=B 、PID 调节器的传输函数 ⎥⎦⎤⎢⎣⎡++==S T S T K S E S U S D D I P 11)()()(5)PID 调节器各校正环节的作用A 、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减小偏差。
B 、积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积分时间常数TI ,TI 越大,积分作用越弱,反之则越强。
C 、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号。
(1) 数字PID 控制器1)模拟PID 控制规律的离散化表2 模拟PID 控制规律2)数字PID 控制器的差分方程[]000)()()()1()()()()(u n u n u n u u n e n e T T i e T T n e K n u D I P ni D I P +++=+⎭⎬⎫⎩⎨⎧--++=∑=式中 )()(n e K n u P P = 称为比例项 ∑==ni IPI i e T T K n u 0)()( 称为积分项[])1()()(--=n e n e TT K n u DPD 称为微分项 四、系统完成的功能该系统的被控对象为电炉,采用热阻丝加热,利用大功率可控硅控制器控制热阻丝两端所加的电压大小,来改变流经热阻丝的电流,从而改变电炉炉内的温度。
可控硅控制器输入为0~5伏时对应电炉温度0~500℃,温度传感器测量值对应也为0~5伏,对象的特性为带有纯滞后环节的一阶惯性系统,这里惯性时间常数取T 1=30秒,滞后时间常数取τ=10秒。
该系统利用单片机可以方便地实现对PID 参数的选择与设定,实现工业过程中PID 控制。
它采用温度传感器热电偶将检测到的实际炉温进行A/D 转换,再送入计算机中,与设定值进行比较,得出偏差。
对此偏差按PID 规律进行调整,得出对应的控制量来控制驱动电路,调节电炉的加热功率,从而实现对炉温的控制。
利用单片机实现温度智能控制,能自动完成数据采集、处理、转换、并进行PID 控制和键盘终端处理(各参数数值的修正)及显示。
在设计中应该注意,采样周期不能太短,否则会使调节过程过于频繁,这样,不但执行机构不能反应,而且计算机的利用率也大为降低;采样周期不能太长, 否则会使干扰无法及时消除,使调节品质下降。
五、系统模块设计1、系统硬件设计框图与元器件选择电炉炉温控制系统的硬件选用MCS—51系列89C51作为主控中心。
为实现对系统的处理,将温度传感器采集得到的值,与通过键盘设置的上限及下限值进行比较,系统根据比较结果进行相应的控制操作。