1 引言机器人是作为现代高新技术的重要象征和发展结果,已经广泛应用于国民生产的各个领域,并正在给人类传统的生产模式带来革命性的变化,影响着人们生活的方方面面。
对于步行机器人来说,它只需要模仿人在特殊情况下(平地或己知障碍物)完成步行动作,这个条件虽然可以使机器人的骨骼机构大大降低和简化,但也不是说这个系统就不复杂了,其步行动作一样是高度自动化的运动,需要控制机构进行复杂而巧妙地协调各个关节上的动作。
双足机器人的研究工作开始于上世纪60年代末,只有三十多年的历史,然而成绩斐然。
如今已成为机器人领域主要研究方向之一。
最早在1968年,英国的Mosher.R 试制了一台名为“Rig”的操纵型双足步行机器人[1],揭开了双足机器人研究的序幕。
该机器人只有踝和髋两个关节,操纵者靠力反馈感觉来保持机器人平衡。
1968~1969年间,南斯拉夫的M.Vukobratovic提出了一种重要的研究双足机器人的理论方法,并研制出全世界第一台真正的双足机器人。
双足机器人的研制成功,促进了康复机器人的研制。
随后,牛津大学的Witt等人也制造了一个双足步行机器人,当时他们的主要目的是为瘫痪者和下肢残疾者设计使用的辅助行走装置。
这款机器人在平地上走得很好,步速达0.23米/秒。
日本加藤一郎教授于1986年研制出WL-12型双足机器人。
该机器人通过躯体运动来补偿下肢的任意运动,在躯体的平衡作用下,实现了步行周期1.3秒,步幅30厘米的平地动态步行。
法国Poitiers大学力学实验室和国立信息与自动化研究所INRIA机构共同开发了一种具有15个自由度的双足步行机器人BIP2000,其目的是建立一整套具有适应未知条件行走的双足机器人系统。
它们采用分层递解控制结构,使双足机器人实现站立、行走、爬坡和上下楼梯等。
此外,英国、苏联、南斯拉夫、加拿大、意大利、德国、韩国等国家,许多学者在行走机器人方面也做出了许多工作。
国内双足机器人的研制工作起步较晚。
1985年以来,相继有几所高校进行了这方面的研究并取得了一定的成果。
哈尔滨工业大学自1985年开始研制双足步行机器人,迄今为止已经完成了三个型号的研制工作。
其中HIT-Ⅲ为12个自由度,实现了静态步行和动态步行,能够完成前/后行、侧行、转弯、上下台阶及上斜坡等动作。
目前,该校正致力于功能齐全的双足机器人HIT-Ⅳ的研制工作,新机器人包括行走机构、上身及髋部执行机构,初步设定32个自由度。
国防科技大学也进行了这方面的研究。
在1989年研制成功了一台双足行走机器人,这台机器人具有10个自由度,能完成静态步行和动态步行。
国防科技大学还将工业机器人的轨迹示教方法用到了两足步行机器人的步态规划中,形成了步行机器人的步态示教规划技术。
值得一提的是,北京理工大学研制成功我国首例拟人机器人BRH-01,该机器人身高1.58米,体重76公斤,具有32个自由度,每小时能够行走1公里,步幅0.33米。
除了能打太极拳,这个机器人还会腾空行走,并能根据自身的平衡状态和地面高度变化,实现未知路面的稳定行走。
它在系统集成、步态规划和控制系统等方面实现了重大突破,标志着我国双足机器人研究已经跨入世界先进行列。
国内其它院校如清华大学、上海交通大学、北京航空航天大学等高等院校也在近几年投入了相当的人力、物力,进行智能双足机器人的研制工作。
我校也开始了这方面的研究工作,不过我们的工作处于研究的初级阶段。
为了促进机器人技术在我国的发展,全国各地尤其是部分高校举办了各种类型的机器人大赛。
中国机器人大赛是由中国自动化学会机器人竞赛工作委员会和科技部高技术研究发展中心主办的一个全国性的赛事。
其中最为引人瞩目的舞蹈机器人项目,足球机器人项目就是为了促进双足步行机器人的发展而设立的。
由于步行机器人的实现目前还存在很多技术难题,前几届全国机器人大赛基本上是以轮式机器人为主,步行机器人参赛才被列入议程不久。
由此可见,双足步行机器人的发展还有一段很长的路要走。
研制双足步行机器人的重要内容是对其进行建模分析、步态规划、控制分析等。
基于上述原因,本课题拟进行双足步行机器人的基本设计与研究,研制具有高度稳定性的双足步行机器人平台,为研究得后续工作和进一步的拟人机器人研制奠定基础,所设计的机器人以ATmega1280单片机微控制器为核心技术芯片,完成行走、下蹲、倒地、起身、前滚翻、后滚翻等简单动作,同时通过一些必要的传感器组件完成其对前方道路情况的探测和判断,以达到避障效果。
2 双足智能机器人总体分析要设计和开发一个步行机器人,首先应该对其进行总体分析和设计,确定步行机器人的功能、基本结构和系统配置等。
2.1 功能定位这款机器人不仅能够满足实验室科研的需要,而且应该是一款很适合学生参与、研究、学习的机器人,能够满足互相学习的需要。
现在希望制作出一个成本相对较低的机器人,研制双足步行机器人能够满足这方面的要求。
基于上面几点的考虑,决定开发一款双足智能机器人,首先使其能够完成一些基本动作,既开始时先走3步、立正、然后卧下(身体向前)、向前翻跟斗3次,再起立、向前走3步、立正、然后卧下(身体向后)、再向后翻跟斗2次、再起立、然后以轻快步履走向终点、要在指定5分钟或少于指定时间内完成所有动作,及要走到终点,同时要求其对前方道路情况的探测和判断,用以避障。
2.2 自由度的配置机器人可以有很多不同类型的关节,有线性的、旋转的、滑动的或球铰链型的。
人体的髋关节和踝关节类似小运动范围的球关节,能够使人灵活行走,实现前后左右拐弯等行走动作,方向灵活,但需要控制的自由度多、难度大,所以在机器人结构中不常用。
但是单纯用旋转关节来实现多自由度的设计势必给空间布置和安装增加了难度,而且同时又考虑到关节驱动件驱动能力、运动效率和设计成本,以及设计审美性等因素。
该双足智能机器人设计的目的是要实现拟人下肢多自由度得平稳行走,在实现这个功能的前提下为降低设计的难度,我们按照目前世界上各研究机构普通采用的下肢10个自由度的关节配置形式,来实现行走功能所必须的各关节自由度分布,具体自由度配置为单腿髋关节2个,膝关节1个,踝关节2个。
髋关节用于摆动腿,实现迈步,并起到了辅助平衡作用。
膝关节主要用来调节重心的高度,及改变摆动腿的着地高度,使之与地形相适应。
踝关节用来和髋关节相配合实现支撑腿的移动,以及调整与地面的接触状态。
基于郑元芳博士的理论,来规划自己所要设计的双足机器人的自由度。
为了实现这款双足步行机器人的稳步行走,可以规划其运动过程,假设机器人行走步骤:先走3步,立正,然后卧下,向前翻跟斗3次,再起立,向前走3步,立正,然后卧下(身体向后),再向后翻跟斗2次,再起立,然后走向终点,遇到障碍物,能向左拐。
则从机器人步行步骤可以看出:机器人向前迈步,髋关节的前向旋转自由度起作用,同时配合踝关节可实现支撑腿的移动;这样,所设计的双足步行机器人有10个个自由度,每条腿5个自由度,即踝关节有2个自由度,膝关节有1个自由度,髋关节有2个自由度,包括前向、后向自由度。
其结构图见下图1。
图1自由度的分配踝关节和髋关节采用十字交叉结构。
十字交叉关节又叫万向联轴节,常用于汽车方向盘底盘转向机构,可以实现互相垂直方向的两个自由度运动,这种机构可以减少关节耦合程度和非线性。
研究表明:至少要有髋、膝、踝这三个关节,双足稳定行走才能成为可能。
髋、膝、踝关节对于稳定有效的行走来说是不可少的。
髋关节用于摆动腿,实现迈步并使上躯体前倾或者后仰,使之在步行过程中起辅助平衡作用。
膝关节主要用来调整重心的高度、并用来调整摆动腿的着地高度,使之与地形相适应。
踝关节和步行功能有关,它用来和髋关节相配合实现支撑腿和上躯体的移动,而且还可以调整脚掌与地面的接触状态。
如果踝关节被固定,将会缺乏与地面触觉感知的能力,前后向稳定性很差。
2.3系统结构设计根据确定的自由度配置方案以及选用的微型伺服马达、传感器、控制板,设计机器人的零件。
本着结构简单、尽量采用通用零件、外形美观等原则,对机器人的机构及外观进行优化。
2.3.1 布置对称性本文设计的机器人机构,其主要特点有以下几点:(1) 步行运动中普遍存在结构对称性。
Goldberg[3]等人研究了步行运动中的对称性,发现机身运动的对称性和腿机构的对称性之间存在相互关系。
在单足支撑阶段,对称性的机身运动要求腿部机构也是对称的;在双足支撑阶段,机身对称性运动未必需要腿部机构的对称性,除非有额外的约束条件。
根据这一点,我们在结构设计时也采用对称性布置。
(2) 框架的设计有效地利用了舵机的尺寸大小,并使舵机的活动范围能尽量符合各关节的活动范围。
(3) 采用多关节型结构。
行走机构能实现平地前后、平地侧行、转弯、上下台阶等功能。
(4) 整个结构采用1mm的铝合金(LY12)钣金材料。
(5) 由于机器人的各关节是用舵机驱动为了减小机器人的体积、减轻重量,机器人的结构做成是框架型的。
框架的设计有效地利用了舵机的尺寸大小,并使舵机的活动范围能尽量符合各关节的活动范围。
实物图见下图2所示。
图2 狭窄足双足机器人机械结构简图2.3.2 驱动方案的选择实现行走的基本问题是对机器人各关节位置、速度的伺服控制和协调控制。
如果把连杆以及关节想象为机器人的骨骼,那么驱动器就起到肌肉的作用,它通过移动或转动连杆来改变机器人的构型。
驱动器必须有足够的功率对负载加速或者减速。
同时,启动器本身要精确、灵敏、轻便、经济、使用方便可靠且易于维护。
目前机器人的驱动方式主要有液压驱动、气压驱动和电机驱动三种方式。
液压驱动方式虽然具有驱动力矩大、响应速度快等特点,但是成本高、重量大、工艺复杂,且有发热问题。
气压驱动易于高速控制,气动调节阀的制造精度要求没有液压元件高、无污染,但是位置和速度控制困难,并且其工作稳定性差,压缩空气需要除水。
液压驱动与气压驱动不能实现试验系统自带能源的目标,直接决定了这两种驱动方式难于应用到双足机器人系统中。
电机驱动具有成本低、精度高、可靠且维修方便等特点,容易和计算控制系统相连接,目前的双足机器人大都采用这种方式。
舵机是一种最早应用在航模运动中的动力装置,是一种微型伺服马达,它的控制信号是一个宽度可调的方波脉冲信号,所以很方便和数字系统进行接口。
只要能产生标准的控制信号的数字设备都可以用来控制舵机,比如PLC、单片机和DSP等。
而且舵机体积紧凑、便于安装、输出力矩大、稳定性好、控制简单。
根据所需的驱动力矩要求和性价比方面的考虑,我们决定选用辉盛公司生产的12公斤大扭力全金属齿轮舵机。
该类型舵机价格适中且规格参数能够满足双足机器人的各项性能要求。
因此在综合了开销,性能等一系列因素后我们选择了MG945。
经过尝试,我们得出了舵机转动角度与脉冲的对应关系:90度对应的差不多是1.6ms的脉冲,也就是说一个1.6ms的脉冲MG945就转到90度,而0度对应的是0.8ms脉冲,180度对应的是2.1ms脉冲。