当前位置:文档之家› 电子版-生物膜动力学的研究现状与展望

电子版-生物膜动力学的研究现状与展望

生物膜动力学的研究现状与展望1 引言生物膜法作为一种高效的废水处理方法,已经在工业界获得了广泛应用。

生物膜废水处理系统的性能在很大程度上取决于生物膜的形成及其动力学过程。

最近三十年来,各国学者围绕生物膜的形成、发展、结构以及动力学特性等从数学模型、数值模拟和实验研究等方面进行了大量的研究,取得了许多重要进展,为生物膜反应器的设计提供了理论和实验支持,有力地推动了生物膜废水处理工艺的发展。

2 生物膜动力学模型的研究进展动力学数学模型一直被作为模拟生物膜中微生物动力学行为和生物膜微观结构的一种有力工具,也是将生物膜内微观现象和大规模工艺运行的宏观指标联系起来的关键工具【1】。

迄今为止,生物膜动力学数学模型的使用仍在研究领域占主导地位。

科研工作者对生物膜形成、构成、结构及功能的兴趣,极大地推动了生物膜动力学数学模型的发展。

自20世纪70年代反应-扩散动力学模型提出以来,描述生物膜动力学的模型先后又有Capdeville 增长动力学体系、元胞自动机模型和复合生物膜模型,分别介绍如下:2.1 反应-扩散动力学模型【2,3】反应-扩散动力学模型是描述生物膜动力学的最基本的模型。

几乎所有的生物膜数学模型都假定生物膜内电子供体、电子受体和所有的营养物质只通过扩散作用传递给微生物(内部传质),而忽略了这些物质从液相主体到生物膜的传递过程(外部传质)。

反应-扩散模型将生物膜假设为规则连续介质的稳态膜(包含单一物种),仅考虑一维(1D)物质传输和生化转化作用。

生物膜被理想化成具有恒定厚度(f L )和统一细胞密度(f X )的薄膜。

从液相主体到生物膜的基质通量是由生物膜内部的微生物活性产生。

微生物增长用Monod 方程表示;基质消耗速率(ut r )假定正比于微生物生长速率;基质通量仅用扩散表示。

生物膜外部传质限制被认为出现在位于生物膜和液相主体交界面处具有恒定厚度(f L )的边界层中。

传质通量采用菲克定律(Fick Law)描述,但其中的扩散系数用有效扩散系数替代:S S e dS J D dx=。

这种理想化生物膜的数学模型可以用如下微分方程来表示22ˆ.s S S e f S SS d S q S D X t dx K S ∂=-∂+,0f x L ≤≤(1)边界条件为0x =时0S dS dx =(2)f x L =时()S S S e L Sb S dS J D k S S dx ==-(3) 基质利用和扩散由方程(1)描述,边界条件采用式(2)和(3)描述。

由于附着表面不可穿透,故此处的通量和基质梯度为零(见式(2))。

在生物膜和液相主体交界面处的基质浓度(s S )由质量守恒式确定。

即,通过边界层的基质通量必定等于进入生物膜的基质通量(见式(3))。

这个理想化的数学模型可以利用有限差分法近似求解。

当生物膜处于稳态时,系统可以使用有效因子法和伪解析法求解。

关于有效因子法和伪解析法的详细介绍可以参考文献【2,3】。

生物膜反应-扩散理论自20世纪70年代提出后,经过各国学者的大量研究工作而得到完善,并得到了广泛接受和承认。

然而,最近十几年来,许多新的实验研究和发现表明,反应.扩散模型的许多假设是过于理想化的,模型的更为合理化是将来研究的重点【4】。

2.2 Capdeville 生物膜增长动力学模型【4,5】20世纪90年代初,法国CapdeviUe 教授所领导的实验室提出生物膜反应器活性物质和非活性物质的概念,并在此基础上建立了新的生物膜增长动力学模型。

此类模型认为活性物质(a M )主要负责底物降解的全部生物化学反应过程,非活性物(i M )在整个水质净化中不起任何作用;生物膜增长过程可以被划分为六个阶段:潜伏适应期、对数增长期、线形增长阶段、减缓增长阶段、增长稳定阶段和生物膜脱落阶段。

生物膜总积累量可表述为:b a i M M M =+。

有关该模型的详细推导可以参考文献【4,5】.图1给出了b M ,a M 和i M 随时间变化的规律。

Capdeville 生物膜增长动力学模型实际上采用了Logistic 方程描述活性物质的积累。

该模型体系揭示了b M ,a M 和i M 之间的相互作用,论证了生物膜反应器中最大活性生物量的存在。

图1 动力学增长期b M ,a M 和i M 的模型模拟【4】它使人们清楚地认识到在水质净化过程中,真正起作用的只是活性生物量部分,而不是人们通常观察到的总生物量。

当活性生物量a M 达到最大值max ()a M 后,生物膜反应器在其它运行参数不变的情况下,出水水质即达到稳定状态。

此后出水水质不因总生物量的积累而有明显改善。

该理论为新一代薄层生物膜反应器的设计提供了理论基础。

但是该模型还仅仅处于发展阶段:模型采取了一些新的参数,因而在参数值和参数范围生物膜量的确定上,还没有很成熟的工作成果可以采用;在实验中活性物质和非活性物质很难区分,因此尽管间接验证是成立的,但直接验证还相当困难;此外,模型没有考虑脱落、外部环境等系统条件对生物膜形成和动力学特征的影响。

这一切均表明该模型还有很多需要将来去完善的地方。

2.3 元胞自动机(CA)模型许多学者基于元胞自动机(cellular automaton)的概念,结合描述生物膜内传质和反应的微分方程,进行数值模拟,研究系统参数对生物膜结构、形态和功能的影响;或将生物膜细胞生长、衰亡、脱落、基质扩散和基质利用考虑为随机过程,假定简单的局部的规则,建立生物膜形成和结构的2D和3D数学模型,研究各个参数对生物膜结构和形态的影响。

Colasanti【6】在1992年首先将元胞自动机概念作为一种数学方法引入生物膜建模中以描述生物膜的异质性(heterogeneity)。

Wimpenny【7】在回顾了有关微生物生物膜基本结构的文献后发现至少存在三种概念性的模型:异质镶嵌型生物膜模型、水通道生物膜模型和紧密生物膜模型。

他认为在考虑生长资源的影响后,三种模型可能都是正确的,其差异只是由于生物膜内的不同基质浓度造成的;他通过细菌定殖的实验研究和利用元胞自动机所作的数值模拟证实:生物膜结构主要取决于基质浓度。

Hermanowiez【8-10】通过数值模拟发现,浓度边界层和水力边界层的厚度对生物膜的结构有重要的影响,液相主体营养物浓度的影响并不重要。

当外部传质限制明显时,模型生物膜发展为一个开放结构;当浓度边界层变薄且外部传质加强时,产生一层致密的生物膜。

Hermanowiez为简单的局部规则控制细胞的生长和脱落,而细胞的自组织产生了生物膜结构的不同形态【9,10】。

也有学者利用元胞自动机模型研究生物膜3D异质性及种群动力学。

例如:Picioreanu 等人【11】研究水力条件对生物膜的松动、脱落的影响;Rittmann等人【12】主要研究生物膜边界层的厚度和形状对生物膜的结构及活性的影响;Noguera等人【13】主要描述厌氧生物膜的异质性和微生物种群的形成对生物膜3D结构的影响。

Laspidou和Rittmann【14,15】引入了生物膜压实效应(consolidation),建立了一个包括活性物质、非活性物质和胞外聚合物(EPS)等在内的统一的多组分元胞自动机模型(UMCCA),并通过数值模拟研究生物膜密度、各组分的变化以及生物膜形态,并和已有的实验进行了比较。

以上提到的有关生物膜的元胞自动机模型,基本上都可以看作是一种混合模型,他们将描述物理和生化过程的微分方程和元胞自动机模型结合起来,主要利用元胞自动机算法对微分方程进行求解。

Pizarro等人【16】采用了新的方法,建立了一个的完全意义上的CA模型,将生物膜生长中出现的许多现象,如基质扩散、基质利用、生物膜脱落和衰亡等都利用随机过程(元胞自动机)来模拟,并利用此模型来预测基质梯度和通量,得到了与微分方程模型相似的结果,且在高浓度时更加精确。

元胞自动机模型在生物膜动力学建模以及在生物膜形态和结构模拟方面得到了广泛应用,并取得了许多有意义的成果。

不过由于元胞自动机是通过人为假定的计算机算法规则来反映动力学,本身并没有很清楚的物理背景,因此元胞自动机模型的理论基础及其有效性受到很大的质疑。

元胞自动机模型应在未来的研究中不断完善。

2.4 多物种复合生物膜模型生物膜内除存在异养菌以外通常同时存在硝化菌和反硝化菌等自养菌。

因此多物种模型是生物膜建模过程的研究热点。

但由于以下几点原因,使得多物种生物膜的建模和模拟成为废水处理的生化操作建模中最为复杂和最为困难的过程之一。

首先,必须同时考虑反应和传质。

第二,不同物种会同时竞争一种营养物质。

第三,不同物种会在生物膜内部竞争生长空间。

生物膜内多物种建模的最理想方式是假定生物膜内任一点处都可以生长各种类型的细菌,而它们的最终分布决定于竞争到的营养和生长空间。

限于篇幅的原因,我们在这里对多物种生物膜建模仅作简单介绍。

具体可以参考《Biofilms》中的第1l章【17】,或其它关于此类建模的论文【18-26】。

此外,Reichert建立了一个应用计算机语言处理一般用途的多物种生物膜模型的软件AQUASIMl【27】(或参考http://www.aquasim.eawag.ch)。

Wanner和Gujer【19】研究了异养菌和自养菌对液相主体内溶解氧的竞争问题,并考察了共存条件。

Rittmann和Manem【22】建立了仅仅竞争生长空间的多种细菌的稳态生物膜模型。

物种的最终分布将决定于其在生物膜内各点处的相对生长速度。

Rittmann等【23】在2002年提出了瞬态多物种生物膜模型(TSMSBM),该模型综合了已有模型的重要特性,用以描述时变条件下特别是反冲洗引起的周期性脱落情况下的多物种生物膜。

Cao等【25】发展了一个外电流作用下的多物种生物膜内稳态模型,用于描述异养菌和自养菌的相互竞争。

王志盈等[26]根据活性生物膜扩张原理,建立了硝化生物膜中微生物相互作用的非稳态解析数学模型,并可预测生物膜厚度的变化与微生物菌群的空间分布。

综上所述,反应,扩散模型主要关心基质的去除动力学,Capdeville生物膜增长动力学模型主要关心活性生物量和非活性生物量的积累,而原胞自动机模型则主要关心生物膜的形态和结构,复合生物膜模型则更关心生物膜内各微生物种群的相互作用和空间分布。

这四类模型形成了生物膜动力学理论研究的主流。

3.生物膜动力学的实验研究除了理论模型上的进展外,最近十几年科学家们开展了不少针对生物膜的实验研究,做出了许多发现,其中最重要的发现是生物膜的异质性(heterogeneity)和分形结构(fraetal structure)。

这些新的实验发现已经明显地改变了人们对生物膜系统的看法,并引起了对生物膜动力学理论模型的重要修正。

相关主题